Lossy compression of general random variables

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Erwin Riegler, Helmut Bölcskei, Günther Koliander
{"title":"Lossy compression of general random variables","authors":"Erwin Riegler, Helmut Bölcskei, Günther Koliander","doi":"10.1093/imaiai/iaac035","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the lossy compression of general random variables, specifically with rate-distortion theory and quantization of random variables taking values in general measurable spaces such as, e.g. manifolds and fractal sets. Manifold structures are prevalent in data science, e.g. in compressed sensing, machine learning, image processing and handwritten digit recognition. Fractal sets find application in image compression and in the modeling of Ethernet traffic. Our main contributions are bounds on the rate-distortion function and the quantization error. These bounds are very general and essentially only require the existence of reference measures satisfying certain regularity conditions in terms of small ball probabilities. To illustrate the wide applicability of our results, we particularize them to random variables taking values in (i) manifolds, namely, hyperspheres and Grassmannians and (ii) self-similar sets characterized by iterated function systems satisfying the weak separation property.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"21 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaac035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is concerned with the lossy compression of general random variables, specifically with rate-distortion theory and quantization of random variables taking values in general measurable spaces such as, e.g. manifolds and fractal sets. Manifold structures are prevalent in data science, e.g. in compressed sensing, machine learning, image processing and handwritten digit recognition. Fractal sets find application in image compression and in the modeling of Ethernet traffic. Our main contributions are bounds on the rate-distortion function and the quantization error. These bounds are very general and essentially only require the existence of reference measures satisfying certain regularity conditions in terms of small ball probabilities. To illustrate the wide applicability of our results, we particularize them to random variables taking values in (i) manifolds, namely, hyperspheres and Grassmannians and (ii) self-similar sets characterized by iterated function systems satisfying the weak separation property.
一般随机变量的有损压缩
摘要:本文主要研究一般随机变量的有损压缩问题,特别是在流形和分形集合等一般可测空间中取值的随机变量的率畸变理论和量化问题。流形结构在数据科学中很普遍,例如压缩感知、机器学习、图像处理和手写数字识别。分形集在图像压缩和以太网流量建模中得到了应用。我们的主要贡献是率失真函数的边界和量化误差。这些界限是非常一般的,本质上只要求存在满足小球概率的某些规则条件的参考测度。为了说明我们的结果的广泛适用性,我们将它们具体到(i)流形中取值的随机变量,即超球和Grassmannians,以及(ii)由满足弱分离性质的迭代函数系统表征的自相似集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信