{"title":"Sensitivity Analysis of Geomechanics Influence on The Success of Hydraulic Fracturing in Shale Gas Reservoir","authors":"Desti Hernomita, Tomi Erfando","doi":"10.25299/jgeet.2023.8.2.12351","DOIUrl":null,"url":null,"abstract":"Shale gas has a permeability of <0.1 mD and a porosity of around 2% - 8% to produce gas that rises to the surface through hydraulic fracturing and horizontal drilling. Geomechanics is one of the important factors that influence the success of a hydraulic fracturing job. Technology in fractures makes geomechanics a clear factor in predicting the success or failure of rocks in deformation and knowing the properties that will be faced by fracture fluids which will later be used to see the effectiveness of fracture fluids in resisting fractures. High operational costs need to be studied further to determine the parameters that affect hydraulic fracturing work, especially from the geomechanical aspect to minimize production failures and work safety. The research conducted this time focuses on the sensitivity of geomechanical parameters by using CMG (GEM) reservoir simulations for reservoir models and conducting Response Surface Methodology (RSM) in selection and ease when applied in the field prior to the hydraulic fracturing process. In this sensitivity study carried out on 5 parameters namely stress, Poisson's ratio, Young's modulus, biot coefficient, and pore pressure. The geomechanical parameter that has the most influence on hydraulic fracturing work based on the sensitivity results carried out through 500 data sets using the Analysis of Variance obtained R2 = 0.99 with the results based on the importance value of the pore pressure variable of 3.8. Then Young's modulus is 0.28, stress is 0.12, Poisson's ratio is 0.08, and biot coefficient is 0.04.","PeriodicalId":31931,"journal":{"name":"JGEET Journal of Geoscience Engineering Environment and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGEET Journal of Geoscience Engineering Environment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jgeet.2023.8.2.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Shale gas has a permeability of <0.1 mD and a porosity of around 2% - 8% to produce gas that rises to the surface through hydraulic fracturing and horizontal drilling. Geomechanics is one of the important factors that influence the success of a hydraulic fracturing job. Technology in fractures makes geomechanics a clear factor in predicting the success or failure of rocks in deformation and knowing the properties that will be faced by fracture fluids which will later be used to see the effectiveness of fracture fluids in resisting fractures. High operational costs need to be studied further to determine the parameters that affect hydraulic fracturing work, especially from the geomechanical aspect to minimize production failures and work safety. The research conducted this time focuses on the sensitivity of geomechanical parameters by using CMG (GEM) reservoir simulations for reservoir models and conducting Response Surface Methodology (RSM) in selection and ease when applied in the field prior to the hydraulic fracturing process. In this sensitivity study carried out on 5 parameters namely stress, Poisson's ratio, Young's modulus, biot coefficient, and pore pressure. The geomechanical parameter that has the most influence on hydraulic fracturing work based on the sensitivity results carried out through 500 data sets using the Analysis of Variance obtained R2 = 0.99 with the results based on the importance value of the pore pressure variable of 3.8. Then Young's modulus is 0.28, stress is 0.12, Poisson's ratio is 0.08, and biot coefficient is 0.04.