Gaussian quantum systems and Kahler geometrical structure

Q2 Mathematics
Mykola Yaremenko
{"title":"Gaussian quantum systems and Kahler geometrical structure","authors":"Mykola Yaremenko","doi":"10.19139/soic-2310-5070-1546","DOIUrl":null,"url":null,"abstract":"In this article, we study the phase-space distribution of the quantum state as a framework to describe the different properties of quantum systems in continuous-variable systems. The natural approach to quantum systems is given the Gaussian Wigner representation, to unify the description of bosonic and fermionic quantum states, we study the structure of the Kahler space geometry as the geometry generated by three forms under the agreement conditions depended on the nature of the state bosonic or fermionic. Multi-mode light is studied, and we established that the Fock space vacuum corresponds to a certain homogeneous Gaussian state.","PeriodicalId":53461,"journal":{"name":"Statistics, Optimization and Information Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization and Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the phase-space distribution of the quantum state as a framework to describe the different properties of quantum systems in continuous-variable systems. The natural approach to quantum systems is given the Gaussian Wigner representation, to unify the description of bosonic and fermionic quantum states, we study the structure of the Kahler space geometry as the geometry generated by three forms under the agreement conditions depended on the nature of the state bosonic or fermionic. Multi-mode light is studied, and we established that the Fock space vacuum corresponds to a certain homogeneous Gaussian state.
高斯量子系统和Kahler几何结构
在本文中,我们研究了量子态的相空间分布作为描述连续变量系统中量子系统不同性质的框架。给出了量子系统的自然方法高斯维格纳表示,为了统一玻色子和费米子量子态的描述,我们研究了Kahler空间几何的结构,作为三种形式在依赖于玻色子或费米子状态性质的一致条件下产生的几何。研究了多模光,建立了Fock空间真空对应于一定的均匀高斯态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics, Optimization and Information Computing
Statistics, Optimization and Information Computing Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
2.40
自引率
0.00%
发文量
35
期刊介绍: Statistics, Optimization and Information Computing (SOIC) is an international refereed journal dedicated to the latest advancement of statistics, optimization and applications in information sciences. SOIC publishes original research/survey papers on theory, algorithms and applications which covering the range of the interface of statistics, optimization and information sciences. Topics of interest are (but not limited to): Statistical theory and applications [...] Optimization methods and applications[...] Information computing and machine intelligence[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信