Generalized topology and the family of monotonic maps $$\Gamma (X)$$

G. A. Kamel, K. A. Dib
{"title":"Generalized topology and the family of monotonic maps $$\\Gamma (X)$$","authors":"G. A. Kamel, K. A. Dib","doi":"10.1186/s42787-023-00162-5","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, interesting properties of the generalized topological spaces, generated by the monotonic maps $$\\sigma = (cl_{\\delta }\\circ int_{\\delta }),$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>c</mml:mi> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> $$\\alpha = (int_{\\delta }\\circ cl_{\\delta }\\circ int_{\\delta }),$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>c</mml:mi> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> $$\\pi = (int_{\\delta }\\circ cl_{\\delta })$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>π</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>c</mml:mi> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and $$\\beta = (cl_{\\delta }\\circ int_{\\delta }\\circ cl_{\\delta }),$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>c</mml:mi> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>i</mml:mi> <mml:mi>n</mml:mi> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>∘</mml:mo> <mml:mi>c</mml:mi> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> for any generalized topological space $$(X,g_{\\delta })$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> are deduced and analyzed. Special subfamilies of the family of monotonic maps $$\\Gamma (X)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> are studied and interesting results regarding generalized topologies are obtained.","PeriodicalId":33345,"journal":{"name":"Journal of the Egyptian Mathematical Society","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42787-023-00162-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, interesting properties of the generalized topological spaces, generated by the monotonic maps $$\sigma = (cl_{\delta }\circ int_{\delta }),$$ σ = ( c l δ i n t δ ) , $$\alpha = (int_{\delta }\circ cl_{\delta }\circ int_{\delta }),$$ α = ( i n t δ c l δ i n t δ ) , $$\pi = (int_{\delta }\circ cl_{\delta })$$ π = ( i n t δ c l δ ) and $$\beta = (cl_{\delta }\circ int_{\delta }\circ cl_{\delta }),$$ β = ( c l δ i n t δ c l δ ) , for any generalized topological space $$(X,g_{\delta })$$ ( X , g δ ) are deduced and analyzed. Special subfamilies of the family of monotonic maps $$\Gamma (X)$$ Γ ( X ) are studied and interesting results regarding generalized topologies are obtained.
广义拓扑与单调映射族 $$\Gamma (X)$$
摘要本文推导并分析了由单调映射$$\sigma = (cl_{\delta }\circ int_{\delta }),$$ σ = (c l δ°int δ)、$$\alpha = (int_{\delta }\circ cl_{\delta }\circ int_{\delta }),$$ α = (int δ°c l δ°int δ)、$$\pi = (int_{\delta }\circ cl_{\delta })$$ π = (int δ°c l δ)和$$\beta = (cl_{\delta }\circ int_{\delta }\circ cl_{\delta }),$$ β = (c l δ°int δ°c l δ)生成的广义拓扑空间$$(X,g_{\delta })$$ (X, g δ)的一些有趣性质。研究了单调映射族$$\Gamma (X)$$ Γ (X)的特殊子族,得到了关于广义拓扑的有趣结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信