Abdulkareem Sofi, Jinxun Wang, Mathieu Salaün, David Rousseau, Mikel Morvan, Subhash C. Ayirala
{"title":"Smartwater Synergy with Chemical EOR: Studying the Potential Synergy with Surfactants","authors":"Abdulkareem Sofi, Jinxun Wang, Mathieu Salaün, David Rousseau, Mikel Morvan, Subhash C. Ayirala","doi":"10.2118/211475-pa","DOIUrl":null,"url":null,"abstract":"Summary The potential synergy between smartwater and various enhanced oil recovery (EOR) processes has recently attracted significant attention. In previous work, we demonstrated such favorable synergy for polymer floods not only from a viscosity standpoint but also in terms of wettability. Recent studies suggest that smartwater synergy might even extend to surfactant floods. In this work, we investigate the potential synergy between smartwater and surfactant flooding. Opposed to previous work, the potential synergy is investigated from ground zero. We concurrently developed two surfactant formulations for conventional high-salinity injection water and low-salinity smartwater. To design the optimal surfactant-polymer (SP) formulations, we followed a systematic all-inclusive laboratory workflow. Oil displacement studies were performed in preserved core samples using the two developed formulations with conventional injection water and smartwater. The results demonstrated the promising potential of binary surfactant mixtures of olefin sulfonate (OS) and alkyl glyceryl ether sulfonate (AGES) for both waters. The designed binary formulations were able to form Winsor Type III emulsions besides achieving ultralow interfacial tensions (IFTs). Most importantly, in terms of oil displacement, the developed SP formulations in both injection water and low-salinity smartwater were capable of recovering more than 60% of the remaining oil post waterflooding. A key novelty of this work is that it investigates the potential synergy between smartwater and surfactant-based processes from the initial step of surfactant formulation design. Through well-designed from-scratch evaluation, we demonstrate that surfactant-based processes exhibit limited synergies with smartwater. Comparable processes in terms of performance can be designed for both high-salinity and low-salinity waters. It is also quite possible that the synergistic benefits of smartwater on oil recovery cannot be effective in SP flooding processes, especially with specific surfactant formulations under optimal salinity conditions.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Reservoir Evaluation & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/211475-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Summary The potential synergy between smartwater and various enhanced oil recovery (EOR) processes has recently attracted significant attention. In previous work, we demonstrated such favorable synergy for polymer floods not only from a viscosity standpoint but also in terms of wettability. Recent studies suggest that smartwater synergy might even extend to surfactant floods. In this work, we investigate the potential synergy between smartwater and surfactant flooding. Opposed to previous work, the potential synergy is investigated from ground zero. We concurrently developed two surfactant formulations for conventional high-salinity injection water and low-salinity smartwater. To design the optimal surfactant-polymer (SP) formulations, we followed a systematic all-inclusive laboratory workflow. Oil displacement studies were performed in preserved core samples using the two developed formulations with conventional injection water and smartwater. The results demonstrated the promising potential of binary surfactant mixtures of olefin sulfonate (OS) and alkyl glyceryl ether sulfonate (AGES) for both waters. The designed binary formulations were able to form Winsor Type III emulsions besides achieving ultralow interfacial tensions (IFTs). Most importantly, in terms of oil displacement, the developed SP formulations in both injection water and low-salinity smartwater were capable of recovering more than 60% of the remaining oil post waterflooding. A key novelty of this work is that it investigates the potential synergy between smartwater and surfactant-based processes from the initial step of surfactant formulation design. Through well-designed from-scratch evaluation, we demonstrate that surfactant-based processes exhibit limited synergies with smartwater. Comparable processes in terms of performance can be designed for both high-salinity and low-salinity waters. It is also quite possible that the synergistic benefits of smartwater on oil recovery cannot be effective in SP flooding processes, especially with specific surfactant formulations under optimal salinity conditions.
期刊介绍:
Covers the application of a wide range of topics, including reservoir characterization, geology and geophysics, core analysis, well logging, well testing, reservoir management, enhanced oil recovery, fluid mechanics, performance prediction, reservoir simulation, digital energy, uncertainty/risk assessment, information management, resource and reserve evaluation, portfolio/asset management, project valuation, and petroleum economics.