{"title":"Elliptic problems with mixed nonlinearities and potentials singular at the origin and at the boundary of the domain","authors":"Bartosz Bieganowski, Adam Konysz","doi":"10.1007/s11784-023-01085-5","DOIUrl":null,"url":null,"abstract":"Abstract We are interested in the following Dirichlet problem: $$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u + \\lambda u - \\mu \\frac{u}{|x|^2} - \\nu \\frac{u}{\\textrm{dist}(x,\\mathbb {R}^N \\setminus \\Omega )^2} = f(x,u) &{} \\quad \\text{ in } \\Omega \\\\ u = 0 &{} \\quad \\text{ on } \\partial \\Omega , \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>-</mml:mo> <mml:mi>μ</mml:mi> <mml:mfrac> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mfrac> <mml:mo>-</mml:mo> <mml:mi>ν</mml:mi> <mml:mfrac> <mml:mi>u</mml:mi> <mml:mrow> <mml:mtext>dist</mml:mtext> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>\\</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mspace /> <mml:mtext>on</mml:mtext> <mml:mspace /> <mml:mi>∂</mml:mi> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> on a bounded domain $$\\Omega \\subset \\mathbb {R}^N$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> </mml:math> with $$0 \\in \\Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>∈</mml:mo> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:math> . We assume that the nonlinear part is superlinear on some closed subset $$K \\subset \\Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:math> and asymptotically linear on $$\\Omega \\setminus K$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>K</mml:mi> </mml:mrow> </mml:math> . We find a solution with the energy bounded by a certain min–max level, and infinitely, many solutions provided that f is odd in u . Moreover, we study also the multiplicity of solutions to the associated normalized problem.","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-023-01085-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We are interested in the following Dirichlet problem: $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u + \lambda u - \mu \frac{u}{|x|^2} - \nu \frac{u}{\textrm{dist}(x,\mathbb {R}^N \setminus \Omega )^2} = f(x,u) &{} \quad \text{ in } \Omega \\ u = 0 &{} \quad \text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$ -Δu+λu-μu|x|2-νudist(x,RN\Ω)2=f(x,u)inΩu=0on∂Ω, on a bounded domain $$\Omega \subset \mathbb {R}^N$$ Ω⊂RN with $$0 \in \Omega $$ 0∈Ω . We assume that the nonlinear part is superlinear on some closed subset $$K \subset \Omega $$ K⊂Ω and asymptotically linear on $$\Omega \setminus K$$ Ω\K . We find a solution with the energy bounded by a certain min–max level, and infinitely, many solutions provided that f is odd in u . Moreover, we study also the multiplicity of solutions to the associated normalized problem.
期刊介绍:
The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to:
(i) New developments in fixed point theory as well as in related topological methods,
in particular:
Degree and fixed point index for various types of maps,
Algebraic topology methods in the context of the Leray-Schauder theory,
Lefschetz and Nielsen theories,
Borsuk-Ulam type results,
Vietoris fractions and fixed points for set-valued maps.
(ii) Ramifications to global analysis, dynamical systems and symplectic topology,
in particular:
Degree and Conley Index in the study of non-linear phenomena,
Lusternik-Schnirelmann and Morse theoretic methods,
Floer Homology and Hamiltonian Systems,
Elliptic complexes and the Atiyah-Bott fixed point theorem,
Symplectic fixed point theorems and results related to the Arnold Conjecture.
(iii) Significant applications in nonlinear analysis, mathematical economics and computation theory,
in particular:
Bifurcation theory and non-linear PDE-s,
Convex analysis and variational inequalities,
KKM-maps, theory of games and economics,
Fixed point algorithms for computing fixed points.
(iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics,
in particular:
Global Riemannian geometry,
Nonlinear problems in fluid mechanics.