Multiple positive solutions for a Schrödinger-Poisson system with critical and supercritical growths

IF 0.8 3区 数学 Q2 MATHEMATICS
Jun Lei, Hong-Min Suo
{"title":"Multiple positive solutions for a Schrödinger-Poisson system with critical and supercritical growths","authors":"Jun Lei, Hong-Min Suo","doi":"10.4213/im9244e","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the following Schrödinger-Poisson system $$ \\begin{cases} -\\Delta u+u+\\lambda\\phi u= Q(x)|u|^{4}u+\\mu \\dfrac{|x|^\\beta}{1+|x|^\\beta}|u|^{q-2}u&amp;amp;in \\mathbb{R}^3, -\\Delta \\phi=u^{2} &amp;amp;in \\mathbb{R}^3, \\end{cases} $$ where $0< \\beta<3$, $6<q<6+2\\beta$, $Q(x)$ is a positive continuous function on $\\mathbb{R}^3$, $\\lambda,\\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"141 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9244e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the following Schrödinger-Poisson system $$ \begin{cases} -\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu \dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u&amp;in \mathbb{R}^3, -\Delta \phi=u^{2} &amp;in \mathbb{R}^3, \end{cases} $$ where $0< \beta<3$, $60$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.
临界和超临界生长Schrödinger-Poisson系统的多个正解
本文研究如下Schrödinger-Poisson系统$$ \begin{cases} -\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu \dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u&amp;in \mathbb{R}^3, -\Delta \phi=u^{2} &amp;in \mathbb{R}^3, \end{cases} $$,其中$0< \beta<3$, $6<q<6+2\beta$, $Q(x)$是$\mathbb{R}^3$上的正连续函数,$\lambda,\mu>0$是实参数。通过变分法和Nehari法,得到了系统有$k$正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信