The partial Temperley–Lieb algebra and its representations

IF 0.6 2区 数学 Q3 MATHEMATICS
Stephen Doty, Anthony Giaquinto
{"title":"The partial Temperley–Lieb algebra and its representations","authors":"Stephen Doty, Anthony Giaquinto","doi":"10.4171/jca/74","DOIUrl":null,"url":null,"abstract":"In this paper, we give a combinatorial description of a new diagram algebra, the partial Temperley–Lieb algebra, arising as the generic centralizer algebra $\\mathrm{End}\\_{\\mathbf{U}\\_q(\\mathfrak{gl}\\_2)}(V^{\\otimes k})$, where ${V = V(0) \\oplus V(1)}$ is the direct sum of the trivial and natural module for the quantized enveloping algebra $\\mathbf{U}\\_q(\\mathfrak{gl}\\_2)$. It is a proper subalgebra of the Motzkin algebra (the $\\mathbf{U}\\_q(\\fraksl\\_2)$-centralizer) of Benkart and Halverson. We prove a version of Schur–Weyl duality for the new algebras, and describe their generic representation theory.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jca/74","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we give a combinatorial description of a new diagram algebra, the partial Temperley–Lieb algebra, arising as the generic centralizer algebra $\mathrm{End}\_{\mathbf{U}\_q(\mathfrak{gl}\_2)}(V^{\otimes k})$, where ${V = V(0) \oplus V(1)}$ is the direct sum of the trivial and natural module for the quantized enveloping algebra $\mathbf{U}\_q(\mathfrak{gl}\_2)$. It is a proper subalgebra of the Motzkin algebra (the $\mathbf{U}\_q(\fraksl\_2)$-centralizer) of Benkart and Halverson. We prove a version of Schur–Weyl duality for the new algebras, and describe their generic representation theory.
部分Temperley-Lieb代数及其表示
本文给出了一种新的图代数——偏Temperley-Lieb代数的组合描述,它是一般的中心化代数$\mathrm{End}\_{\mathbf{U}\_q(\mathfrak{gl}\_2)}(V^{\otimes k})$,其中${V = V(0) \oplus V(1)}$是量子化包络代数$\mathbf{U}\_q(\mathfrak{gl}\_2)$的平凡模与自然模的直接和。它是Benkart和Halverson的Motzkin代数($\mathbf{U}\_q(\fraksl\_2)$ -扶正器)的一个适当的子代数。我们证明了新代数的Schur-Weyl对偶性的一个版本,并描述了它们的一般表示理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信