J. S. Nascimento, E. R. Camelo, M. S. Carvalho, C. F. Virgens
{"title":"Kinetic evaluation of <i>Pachira aquatica</i> Aubl biomass slow pyrolysis towards to biochar production","authors":"J. S. Nascimento, E. R. Camelo, M. S. Carvalho, C. F. Virgens","doi":"10.1080/17597269.2023.2269735","DOIUrl":null,"url":null,"abstract":"AbstractThe abrupt climate change, caused by the anthropogenic activities in the environment, intensified the search for sustainable sources of energy aiming reduce the dependence on fossil fuels. In this study, a multivariate study design was applied within a batch reactor system to determine the influence of process variables and kinetic parameters of slow pyrolysis of Pachira aquatica Aubl fruit peel towards biochar generation. The statistical evaluation of Box Behnken planning model was applied and showed good adjustment to the model establishing the model that describes the significant effect of variables behavior. The maximum biochar yield (41.22%) was observed were temperature (T) = 406 °C, heating rate β = 2 °C min−1, and residence time tR = 60 min, under nitrogen atmosphere. It is also observed that temperature was the most substantial influence on the process, followed by heating rate and the remaining process variables did not exhibit significant individual effects. The empirical model obtained was applied into mass change equation aiming calculate the activation energy (Ea)=77.10 kJ mol−1 and frequency factor (A0)= 6.28 × 1010 s−1. The low activation energy in maximum biochar yield region showed a great potential of Pachira aquatica Aubl fruit peel thermoconversion towards to biochar.Keywords: Biocharslow pyrolysiskineticsbiomassactivation energy AcknowledgmentsThe authors would like to thank Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for financing of the experimental pyrolysis unit (PLANT π/DCET-UNEB) through the agreement CNV.0076/2013, and Coordenação de aperfeicoamento de pessoal de nivel superior (CAPES) for financial support.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data that support the findings of this study are available from the corresponding author, Virgens, C.F., upon reasonable request.Additional informationFundingFapesb and Capes are prominent Brazilian fomentation agencies. Fapesb provided financial support through infrastructure grant CNV.0076/2013 (Project 10.13039/501100006181), while Capes generously awarded master’s scholarships to Juraci Nascimento and Mateus Carvalho.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"8 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2269735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe abrupt climate change, caused by the anthropogenic activities in the environment, intensified the search for sustainable sources of energy aiming reduce the dependence on fossil fuels. In this study, a multivariate study design was applied within a batch reactor system to determine the influence of process variables and kinetic parameters of slow pyrolysis of Pachira aquatica Aubl fruit peel towards biochar generation. The statistical evaluation of Box Behnken planning model was applied and showed good adjustment to the model establishing the model that describes the significant effect of variables behavior. The maximum biochar yield (41.22%) was observed were temperature (T) = 406 °C, heating rate β = 2 °C min−1, and residence time tR = 60 min, under nitrogen atmosphere. It is also observed that temperature was the most substantial influence on the process, followed by heating rate and the remaining process variables did not exhibit significant individual effects. The empirical model obtained was applied into mass change equation aiming calculate the activation energy (Ea)=77.10 kJ mol−1 and frequency factor (A0)= 6.28 × 1010 s−1. The low activation energy in maximum biochar yield region showed a great potential of Pachira aquatica Aubl fruit peel thermoconversion towards to biochar.Keywords: Biocharslow pyrolysiskineticsbiomassactivation energy AcknowledgmentsThe authors would like to thank Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for financing of the experimental pyrolysis unit (PLANT π/DCET-UNEB) through the agreement CNV.0076/2013, and Coordenação de aperfeicoamento de pessoal de nivel superior (CAPES) for financial support.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data that support the findings of this study are available from the corresponding author, Virgens, C.F., upon reasonable request.Additional informationFundingFapesb and Capes are prominent Brazilian fomentation agencies. Fapesb provided financial support through infrastructure grant CNV.0076/2013 (Project 10.13039/501100006181), while Capes generously awarded master’s scholarships to Juraci Nascimento and Mateus Carvalho.
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.