Fabrication of a Cost-effective Piezoresistive Pressure Sensor Based on PVC/Reduced Graphene Oxide (rGO) Composite

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Iraj Ahadzadeh, Samira Dabbagh
{"title":"Fabrication of a Cost-effective Piezoresistive Pressure Sensor Based on PVC/Reduced Graphene Oxide (rGO) Composite","authors":"Iraj Ahadzadeh, Samira Dabbagh","doi":"10.24200/sci.2023.62495.7870","DOIUrl":null,"url":null,"abstract":"A cost-effective piezoresistive sensor based on PVC/Reduced graphene oxide (rGO) was fabricated and its performance was investigated. The weight percent range from 0.1 to 30% of rGO in PVC matrix was studied. Composite parts were prepared by using the solution casting method from tetrahydrofurane (THF) solvent followed by solvent evaporation. The plot of electrical conduction versus rGO percentage was constructed to obtain the percolation threshold concentration. It was found that the percolation threshold of rGO leading to a continuous stable electrical conductivity in PVC matrix is about 25% beyond which electrical resistance was reduced from about 800 GΩ to lower than 100 KΩ range. The relative changes in electrical resistance of prepared polymer parts as a result of impact (stress), stretch and bending deformation were studied. The results showed that the fabricated composite can be used for sensing and/or monitoring and measurement of any mechanical displacement with high sensitivity, promising reproducibility and satisfactory durability. It must be mentioned that, during impact tests of polymer composites, a small piezoelectric effect was also observed for which further complimentary studies are being planned to be performed in near future in order to better understand this effect and its underlining molecular basis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.62495.7870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A cost-effective piezoresistive sensor based on PVC/Reduced graphene oxide (rGO) was fabricated and its performance was investigated. The weight percent range from 0.1 to 30% of rGO in PVC matrix was studied. Composite parts were prepared by using the solution casting method from tetrahydrofurane (THF) solvent followed by solvent evaporation. The plot of electrical conduction versus rGO percentage was constructed to obtain the percolation threshold concentration. It was found that the percolation threshold of rGO leading to a continuous stable electrical conductivity in PVC matrix is about 25% beyond which electrical resistance was reduced from about 800 GΩ to lower than 100 KΩ range. The relative changes in electrical resistance of prepared polymer parts as a result of impact (stress), stretch and bending deformation were studied. The results showed that the fabricated composite can be used for sensing and/or monitoring and measurement of any mechanical displacement with high sensitivity, promising reproducibility and satisfactory durability. It must be mentioned that, during impact tests of polymer composites, a small piezoelectric effect was also observed for which further complimentary studies are being planned to be performed in near future in order to better understand this effect and its underlining molecular basis.
基于PVC/还原氧化石墨烯(rGO)复合材料的高性价比压阻压力传感器的制备
制备了一种基于PVC/还原氧化石墨烯(rGO)的低成本压阻式传感器,并对其性能进行了研究。研究了还原氧化石墨烯在PVC基体中的重量百分比范围为0.1% ~ 30%。以四氢呋喃(THF)为溶剂,采用溶液浇铸法制备了复合材料零件。构建了电导率与氧化石墨烯百分比的关系图,以获得渗透阈值浓度。研究发现,还原氧化石墨烯的渗透阈值约为25%,使PVC基体的电导率持续稳定,超过该阈值,电阻从800 GΩ左右降低到100 KΩ以下。研究了冲击(应力)变形、拉伸变形和弯曲变形对聚合物制件电阻的影响。结果表明,所制备的复合材料可用于任何机械位移的传感和/或监测和测量,具有高灵敏度,良好的再现性和满意的耐久性。必须指出的是,在聚合物复合材料的冲击试验中,还观察到一种小的压电效应,正在计划在不久的将来对此进行进一步的补充研究,以便更好地了解这种效应及其主要的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信