{"title":"The influences of eccentricity on the fastener load and bearing strength of eccentric connection in aircraft structure","authors":"Chenghu Li","doi":"10.1108/aeat-11-2022-0329","DOIUrl":null,"url":null,"abstract":"Purpose This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure. Design/methodology/approach The special experiment is designed for the researches. The fastener loads of the eccentric connection are gained by using the derived formulas and numerical analysis, and the fastener load rules is verified by the experiment. The bearing strength of the eccentric connection is investigated by the experiments under different eccentricities compared with that gained from the experiment. Findings The study results are summarized as follows. Magnitude of the fastener load in the eccentric connection is greatly affected by distance from the fastener to the centroid of the fastener cluster and that from the fastener to the concentrated load. With the increase of eccentricity of the homolateral concentrated load, the fastener load increases, and difference of the fastener loads becomes larger, forming the short plate effect of the bucket. It means that fastener with the maximum load (the shortest plate of the bucket) leads to decrease of the bearing strength of the eccentric connection (the capacity of the bucket). Originality/value The investigation on the influence of eccentricity on the bearing strength of eccentric connection is firstly presented. The vector expression of the fastener load in eccentric connection is firstly derived. And the influencing mechanism of the fastener load on the bearing strengths of the different eccentric connections is demonstrated. The study results can provide guidance for the structure design of the eccentric connection.","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":"20 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aeat-11-2022-0329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure. Design/methodology/approach The special experiment is designed for the researches. The fastener loads of the eccentric connection are gained by using the derived formulas and numerical analysis, and the fastener load rules is verified by the experiment. The bearing strength of the eccentric connection is investigated by the experiments under different eccentricities compared with that gained from the experiment. Findings The study results are summarized as follows. Magnitude of the fastener load in the eccentric connection is greatly affected by distance from the fastener to the centroid of the fastener cluster and that from the fastener to the concentrated load. With the increase of eccentricity of the homolateral concentrated load, the fastener load increases, and difference of the fastener loads becomes larger, forming the short plate effect of the bucket. It means that fastener with the maximum load (the shortest plate of the bucket) leads to decrease of the bearing strength of the eccentric connection (the capacity of the bucket). Originality/value The investigation on the influence of eccentricity on the bearing strength of eccentric connection is firstly presented. The vector expression of the fastener load in eccentric connection is firstly derived. And the influencing mechanism of the fastener load on the bearing strengths of the different eccentric connections is demonstrated. The study results can provide guidance for the structure design of the eccentric connection.
期刊介绍:
Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.