Deep Learning Image Classification Rontgen Dada pada Kasus Covid-19 Menggunakan Algoritma Convolutional Neural Network

Leni Anggraini Susanti, Agus Mohamad Soleh, Bagus Sartono
{"title":"Deep Learning Image Classification Rontgen Dada pada Kasus Covid-19 Menggunakan Algoritma Convolutional Neural Network","authors":"Leni Anggraini Susanti, Agus Mohamad Soleh, Bagus Sartono","doi":"10.25126/jtiik.20231057142","DOIUrl":null,"url":null,"abstract":"Penelitian ini mengusulkan penggunaan Convolutional Neural Network (CNN) dengan arsitektur VGGNet-19 dan ResNet-50 untuk diagnosis COVID-19 melalui analisis citra rontgen dada. Modifikasi dilakukan dengan membandingkan nilai regularisasi dropout 50% dan 80% untuk kedua arsitektur dan mengubah jumlah lapisan klasfikasi menjadi 4 kelas. Selanjutnya, kinerja model dibandingkan berdasarkan ukuran dataset. Dataset terdiri dari 21165 citra, dengan pembagian 10% sebagai data uji dan 90% data dibagi menjadi data latih (80%) dan data validasi (20%). Kinerja model dievaluasi menggunakan metode validasi silang berulang 5 kali lipat. Proses pelatihan menggunakan learning rate 0.0001, optimasi stochastic gradient descent (SGD), dan sepuluh iterasi. Hasil penelitian menunjukkan bahwa penambahan lapisan dropout dengan peluang 50% untuk kedua arsitektur secara efektif mengatasi overfitting dan meningkatkan performa model. Ditemukan bahwa kinerja yang lebih baik dicapai pada ukuran kumpulan data lebih besar dan memberikan peningkatan signifikan pada kinerja model. Hasil klasifikasi menunjukkan arsitektur ResNet-50 mencapai akurasi rata-rata 94.4%, recall rata-rata 94.1%, presisi rata-rata 95.5%, spesifisitas rata-rata 97% dan F1-score rata-rata 94.8%. Sedangkan arsitektur VGGNet-19 mencapai akurasi rata-rata 91%, recall rata-rata 89%, presisi rata-rata 95.0%, spesifisitas rata-rata 96.8% dan F1-score rata-rata 92.7%. Pemanfaatan model ini dapat membantu mengidentifikasi penyebab kematian pasien dan memberikan informasi yang berharga bagi pengambilan keputusan medis dan epidemiologi. Abstract This research proposes using a Convolutional Neural Network (CNN) with VGGNet-19 and ResNet-50 architectures for COVID-19 diagnosis through chest X-ray image analysis. Modifications were made by comparing the dropout regularization values of 50% and 80% for both architectures and altering the number of classification layers to 4 classes. Furthermore, the model's performance was compared based on dataset size. The dataset comprised 21,165 images, with a division of 10% for testing and 90% divided into training data (80%) and validation data (20%). The model's performance was evaluated using the 5-fold repeat cross-validation method. The training process employed a learning rate of 0.0001, stochastic gradient descent (SGD) optimization, and ten iterations. The study's results indicate that adding dropout layers with a 50% probability for both architectures effectively addressed overfitting and improved the model's performance. It was found that better performance was achieved with larger dataset sizes. The classification results indicate the ResNet-50 architecture achieved an average accuracy of 94.4%, average recall of 94.1%, average precision of 95.5%, average specificity of 97%, and average F1-score of 94.8%. Meanwhile, the VGGNet-19 architecture achieved an average accuracy of 91%, an average recall of 89%, average precision of 95.0%, average specificity of 96.8%, and an average F1-score of 92.7%. Utilizing these models can assist in identifying the causes of patient mortality and offer valuable information for medical and epidemiological decision-making.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20231057142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Penelitian ini mengusulkan penggunaan Convolutional Neural Network (CNN) dengan arsitektur VGGNet-19 dan ResNet-50 untuk diagnosis COVID-19 melalui analisis citra rontgen dada. Modifikasi dilakukan dengan membandingkan nilai regularisasi dropout 50% dan 80% untuk kedua arsitektur dan mengubah jumlah lapisan klasfikasi menjadi 4 kelas. Selanjutnya, kinerja model dibandingkan berdasarkan ukuran dataset. Dataset terdiri dari 21165 citra, dengan pembagian 10% sebagai data uji dan 90% data dibagi menjadi data latih (80%) dan data validasi (20%). Kinerja model dievaluasi menggunakan metode validasi silang berulang 5 kali lipat. Proses pelatihan menggunakan learning rate 0.0001, optimasi stochastic gradient descent (SGD), dan sepuluh iterasi. Hasil penelitian menunjukkan bahwa penambahan lapisan dropout dengan peluang 50% untuk kedua arsitektur secara efektif mengatasi overfitting dan meningkatkan performa model. Ditemukan bahwa kinerja yang lebih baik dicapai pada ukuran kumpulan data lebih besar dan memberikan peningkatan signifikan pada kinerja model. Hasil klasifikasi menunjukkan arsitektur ResNet-50 mencapai akurasi rata-rata 94.4%, recall rata-rata 94.1%, presisi rata-rata 95.5%, spesifisitas rata-rata 97% dan F1-score rata-rata 94.8%. Sedangkan arsitektur VGGNet-19 mencapai akurasi rata-rata 91%, recall rata-rata 89%, presisi rata-rata 95.0%, spesifisitas rata-rata 96.8% dan F1-score rata-rata 92.7%. Pemanfaatan model ini dapat membantu mengidentifikasi penyebab kematian pasien dan memberikan informasi yang berharga bagi pengambilan keputusan medis dan epidemiologi. Abstract This research proposes using a Convolutional Neural Network (CNN) with VGGNet-19 and ResNet-50 architectures for COVID-19 diagnosis through chest X-ray image analysis. Modifications were made by comparing the dropout regularization values of 50% and 80% for both architectures and altering the number of classification layers to 4 classes. Furthermore, the model's performance was compared based on dataset size. The dataset comprised 21,165 images, with a division of 10% for testing and 90% divided into training data (80%) and validation data (20%). The model's performance was evaluated using the 5-fold repeat cross-validation method. The training process employed a learning rate of 0.0001, stochastic gradient descent (SGD) optimization, and ten iterations. The study's results indicate that adding dropout layers with a 50% probability for both architectures effectively addressed overfitting and improved the model's performance. It was found that better performance was achieved with larger dataset sizes. The classification results indicate the ResNet-50 architecture achieved an average accuracy of 94.4%, average recall of 94.1%, average precision of 95.5%, average specificity of 97%, and average F1-score of 94.8%. Meanwhile, the VGGNet-19 architecture achieved an average accuracy of 91%, an average recall of 89%, average precision of 95.0%, average specificity of 96.8%, and an average F1-score of 92.7%. Utilizing these models can assist in identifying the causes of patient mortality and offer valuable information for medical and epidemiological decision-making.
深度学习图像分类 Rontgen Dada pada Kasus Covid-19 Menggunakan 算法卷积神经网络
这项研究表明,通过对胸部x光图像分析,对COVID-19的架构进行了革命性的神经连接网络(CNN)。修改是将50%到80%的dropout再生值进行比较,并将基层的数量转换成4个类。接下来,模型根据数据集的大小进行比较。数据集包括21165个图像,测试数据占10%,数据除以培训数据(80%)和验证数据(20%)。使用交叉验证方法反复评估模型性能。培训过程使用0.0001、消化率、消化率(SGD)和十次重复。研究结果表明,两种建筑都有50%的机会有效地增加dropout涂层,提高模型性能。研究发现,更好的表现在于更大的数据集规模,并大大提高了模型性能。分类结果显示,resne50的建筑平均准确率为94.4%,平均召回率为94.1%,平均精度为95%,平均适确度为97%,平均得分为97%和F1-score平均为94.8%。而vggne- 19建筑的平均准确性为91%,平均召回率为89%,平均精度为99.0%,平均分类为96.8%,f1 -得分平均为92.7%。这种模式的应用可以帮助确定患者死亡的原因,并为医疗和流行病学决策提供宝贵的信息。这项研究的建议是使用vggne19和renet -50架构COVID-19对chest x光分析的诊断。修正主义是由将下降回收率计算为50%到80%,用于两门课的经典应用数字。在更远的地方,模型的性能基于数据大小。数据编译2165帧,10%的测试和90%的数据验证(80%)。模特的演出用的是evaluated 5-fold重复一遍cross-validation方法。培训过程扩大了0.0001的学习速率、消化率(SGD)精化和十次重复。研究结果显示,潜在的演员阵容中有50%的可能导致建筑效果过度,并影响模特的表现。我发现用更大的发现来表现会更好。再现的经典作业达到了94.4%的平均计算,94.1%的平均召回,97%的平均得分,94.5%的平均得分和94.8%的平均得分。然而,vggne19架构实现了91%的平均计算,89%的平均召回,99.8%的平均计算,96.8%的平均得分,96.7%的平均得分。使用这些模型可以确定为医学和流行病决策提供价值信息的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信