The fluid-thermal-structural interaction analysis of a new multifoil aerodynamic thrust bearings

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Cheng Xiong, Bo Xu, Zhongwen Huang, Zhenqian Chen
{"title":"The fluid-thermal-structural interaction analysis of a new multifoil aerodynamic thrust bearings","authors":"Cheng Xiong, Bo Xu, Zhongwen Huang, Zhenqian Chen","doi":"10.1177/13506501231198569","DOIUrl":null,"url":null,"abstract":"In the present study, a multiphysics simulation model was established to evaluate the effects of the fluid-thermal-structural interaction on the performance of multifoil gas lubrication thrust bearing. The thermal and elastic deformation mechanisms of multifoil bearings were studied in detail, and the effects of the preload ratio and foil structural parameters on the bearing performance were analyzed. The results show that the preload ratio determines the performance of the multifoil thrust bearing. A small preload helps the bearing maintain a low lift-off speed, whereas a large preload is helpful in improving the bearing load capacity. The thickness of the foil has a significant effect on the gas film pressure distribution and the down foil thickness plays a leading role in the load capacity.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"2 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231198569","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a multiphysics simulation model was established to evaluate the effects of the fluid-thermal-structural interaction on the performance of multifoil gas lubrication thrust bearing. The thermal and elastic deformation mechanisms of multifoil bearings were studied in detail, and the effects of the preload ratio and foil structural parameters on the bearing performance were analyzed. The results show that the preload ratio determines the performance of the multifoil thrust bearing. A small preload helps the bearing maintain a low lift-off speed, whereas a large preload is helpful in improving the bearing load capacity. The thickness of the foil has a significant effect on the gas film pressure distribution and the down foil thickness plays a leading role in the load capacity.
一种新型多翼气动推力轴承的流-热-结构相互作用分析
本文建立了多物理场仿真模型,研究了流体-热-结构相互作用对多翼型气体润滑推力轴承性能的影响。详细研究了多箔轴承的热、弹性变形机理,分析了预紧比和箔片结构参数对轴承性能的影响。结果表明,预紧比决定了多翼推力轴承的性能。小的预紧力有助于轴承保持较低的升离速度,而大的预紧力有助于提高轴承的承载能力。箔片厚度对气膜压力分布有显著影响,下箔片厚度对承载能力起主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信