{"title":"Fermi isospectrality for discrete periodic Schrödinger operators","authors":"Wencai Liu","doi":"10.1002/cpa.22161","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>=</mo>\n <msub>\n <mi>q</mi>\n <mn>1</mn>\n </msub>\n <mi>Z</mi>\n <mi>⊕</mi>\n <msub>\n <mi>q</mi>\n <mn>2</mn>\n </msub>\n <mi>Z</mi>\n <mi>⊕</mi>\n <mtext>…</mtext>\n <mi>⊕</mi>\n <msub>\n <mi>q</mi>\n <mi>d</mi>\n </msub>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\Gamma =q_1\\mathbb {Z}\\oplus q_2 \\mathbb {Z}\\oplus \\ldots \\oplus q_d\\mathbb {Z}$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>q</mi>\n <mi>l</mi>\n </msub>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$q_l\\in \\mathbb {Z}_+$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$l=1,2,\\ldots ,d$</annotation>\n </semantics></math>, are pairwise coprime. Let <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mo>+</mo>\n <mi>V</mi>\n </mrow>\n <annotation>$\\Delta +V$</annotation>\n </semantics></math> be the discrete Schrödinger operator, where Δ is the discrete Laplacian on <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> and the potential <math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>:</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$V:\\mathbb {Z}^d\\rightarrow \\mathbb {C}$</annotation>\n </semantics></math> is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\ge 3$</annotation>\n </semantics></math>: \n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"1126-1146"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22161","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
Let , where , , are pairwise coprime. Let be the discrete Schrödinger operator, where Δ is the discrete Laplacian on and the potential is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension :