Spectral Theory of the Nazarov-Sklyanin Lax Operator

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Ryan Mickler, Alexander Moll
{"title":"Spectral Theory of the Nazarov-Sklyanin Lax Operator","authors":"Ryan Mickler, Alexander Moll","doi":"10.3842/sigma.2023.063","DOIUrl":null,"url":null,"abstract":"In their study of Jack polynomials, Nazarov-Sklyanin introduced a remarkable new graded linear operator ${\\mathcal L} \\colon F[w] \\rightarrow F[w]$ where $F$ is the ring of symmetric functions and $w$ is a variable. In this paper, we (1) establish a cyclic decomposition $F[w] \\cong \\bigoplus_{\\lambda} Z(j_{\\lambda}, {\\mathcal L})$ into finite-dimensional ${\\mathcal L}$-cyclic subspaces in which Jack polynomials $j_{\\lambda}$ may be taken as cyclic vectors and (2) prove that the restriction of ${\\mathcal L}$ to each $Z(j_{\\lambda}, {\\mathcal L})$ has simple spectrum given by the anisotropic contents $[s]$ of the addable corners $s$ of the Young diagram of $\\lambda$. Our proofs of (1) and (2) rely on the commutativity and spectral theorem for the integrable hierarchy associated to ${\\mathcal L}$, both established by Nazarov-Sklyanin. Finally, we conjecture that the ${\\mathcal L}$-eigenfunctions $\\psi_{\\lambda}^s {\\in F[w]}$ {with eigenvalue $[s]$ and constant term} $\\psi_{\\lambda}^s|_{w=0} = j_{\\lambda}$ are polynomials in the rescaled power sum basis $V_{\\mu} w^l$ of $F[w]$ with integer coefficients.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.063","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In their study of Jack polynomials, Nazarov-Sklyanin introduced a remarkable new graded linear operator ${\mathcal L} \colon F[w] \rightarrow F[w]$ where $F$ is the ring of symmetric functions and $w$ is a variable. In this paper, we (1) establish a cyclic decomposition $F[w] \cong \bigoplus_{\lambda} Z(j_{\lambda}, {\mathcal L})$ into finite-dimensional ${\mathcal L}$-cyclic subspaces in which Jack polynomials $j_{\lambda}$ may be taken as cyclic vectors and (2) prove that the restriction of ${\mathcal L}$ to each $Z(j_{\lambda}, {\mathcal L})$ has simple spectrum given by the anisotropic contents $[s]$ of the addable corners $s$ of the Young diagram of $\lambda$. Our proofs of (1) and (2) rely on the commutativity and spectral theorem for the integrable hierarchy associated to ${\mathcal L}$, both established by Nazarov-Sklyanin. Finally, we conjecture that the ${\mathcal L}$-eigenfunctions $\psi_{\lambda}^s {\in F[w]}$ {with eigenvalue $[s]$ and constant term} $\psi_{\lambda}^s|_{w=0} = j_{\lambda}$ are polynomials in the rescaled power sum basis $V_{\mu} w^l$ of $F[w]$ with integer coefficients.
Nazarov-Sklyanin Lax算子的谱理论
在他们对杰克多项式的研究中,Nazarov-Sklyanin引入了一个引人注目的新的梯度线性算子${\mathcal L} \colon F[w] \rightarrow F[w]$,其中$F$是对称函数的环,$w$是一个变量。本文(1)建立了一个循环分解$F[w] \cong \bigoplus_{\lambda} Z(j_{\lambda}, {\mathcal L})$为有限维的${\mathcal L}$ -循环子空间,其中Jack多项式$j_{\lambda}$可以作为循环向量;(2)证明了${\mathcal L}$对每个$Z(j_{\lambda}, {\mathcal L})$的限制具有由$\lambda$的Young图的可加角$s$的各向异性含量$[s]$给出的简单谱。我们的(1)和(2)的证明依赖于与${\mathcal L}$相关的可积层次的交换性和谱定理,它们都是由Nazarov-Sklyanin建立的。最后,我们推测特征值{$[s]$}和常项$\psi_{\lambda}^s|_{w=0} = j_{\lambda}$的{}${\mathcal L}${ -特征函数}$\psi_{\lambda}^s {\in F[w]}$是具有整数系数的$F[w]$的重标幂和基$V_{\mu} w^l$中的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信