Application of Improving ABC in Cold Chain Low Carbon Logistics Path Planning

Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2357
Xiazu Bai
{"title":"Application of Improving ABC in Cold Chain Low Carbon Logistics Path Planning","authors":"Xiazu Bai","doi":"10.12694/scpe.v24i3.2357","DOIUrl":null,"url":null,"abstract":"The market has set higher efficiency and environmental requirements for cold chain logistics, and path planning plays an important role. This study proposes a low-carbon cold chain logistics path planning model based on an improved artificial bee colony algorithm (this paragraph refers to ”fusion algorithm”). The study first establishes the fusion algorithm. Then, in response to the shortcomings of this algorithm, the artificial fish swarm algorithm and genetic algorithm are used to improve it. The final results express that the shortest distance for solving Eil51 using this algorithm is 421.38, the longest distance is 448.58, and the average distance is 439.34; The shortest distance for solving Ulysses22 is 72.46, the longest distance is 73.63, and the average distance is 72.84. The average convergence times for Eil51 and Ulysses22 are 133.57 and 7.86, and the optimal performance ratios for relative error are 0.0076 and 0.0051. The robust performance ratios are 0.0362 and 0.0117. The optimal total cost solution and the average value for solving the relevant distribution problem are 47,894.6 yuan and 48,562.7 yuan, respectively. In summary, the model proposed in the study has good application effects in cold chain low-carbon logistics path planning, and has a certain promoting effect on the development of cold chain logistics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The market has set higher efficiency and environmental requirements for cold chain logistics, and path planning plays an important role. This study proposes a low-carbon cold chain logistics path planning model based on an improved artificial bee colony algorithm (this paragraph refers to ”fusion algorithm”). The study first establishes the fusion algorithm. Then, in response to the shortcomings of this algorithm, the artificial fish swarm algorithm and genetic algorithm are used to improve it. The final results express that the shortest distance for solving Eil51 using this algorithm is 421.38, the longest distance is 448.58, and the average distance is 439.34; The shortest distance for solving Ulysses22 is 72.46, the longest distance is 73.63, and the average distance is 72.84. The average convergence times for Eil51 and Ulysses22 are 133.57 and 7.86, and the optimal performance ratios for relative error are 0.0076 and 0.0051. The robust performance ratios are 0.0362 and 0.0117. The optimal total cost solution and the average value for solving the relevant distribution problem are 47,894.6 yuan and 48,562.7 yuan, respectively. In summary, the model proposed in the study has good application effects in cold chain low-carbon logistics path planning, and has a certain promoting effect on the development of cold chain logistics.
分享
查看原文
改进作业成本法在冷链低碳物流路径规划中的应用
市场对冷链物流提出了更高的效率和环保要求,路径规划发挥着重要作用。本研究提出了一种基于改进人工蜂群算法(本段简称“融合算法”)的低碳冷链物流路径规划模型。本研究首先建立了融合算法。然后,针对该算法的不足,采用人工鱼群算法和遗传算法对其进行改进。最终结果表明:该算法求解Eil51的最短距离为421.38,最长距离为448.58,平均距离为439.34;求解Ulysses22的最短距离为72.46,最长距离为73.63,平均距离为72.84。Eil51和Ulysses22的平均收敛时间分别为133.57和7.86,相对误差的最佳性能比分别为0.0076和0.0051。稳健性能比分别为0.0362和0.0117。最优总成本解为47894.6元,解决相关分配问题的平均值为48562.7元。综上所述,本研究提出的模型在冷链低碳物流路径规划中具有良好的应用效果,对冷链物流的发展具有一定的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信