N. Pughazendi, K. Valarmathi, P.V. Rajaraman, S. Balaji
{"title":"Reliable cluster based data collection framework for IoT-big data healthcare applications","authors":"N. Pughazendi, K. Valarmathi, P.V. Rajaraman, S. Balaji","doi":"10.3233/jifs-233505","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) devices installed in hospital direct data unceasingly; in this manner, energy usage augments with the number of broadcasts too. In this paper, Reliable Cluster based Data Collection Framework (RCDCF) for IoT-Big Data Healthcare Applications (HA) is developed. During clustering process, the connected IoT devices are grouped into clusters. In clustering technique, the available IoT devices are gathered into groups. The device with high battery capacity and processing ability is selected as a cluster head (CH). Each member of the cluster is allocated multiple slots by applying a general function pooled by the Fog node and the entire devices. To perceive and eliminate outliers from the sensor data, Density-based spatial clustering of applications with noise (DBSCAN) method is utilized. To forecast the objective and subjective behaviours of the equipments, a Random Forest Deep Neural Network (RF-DNN) based classification model is utilized. By experimental results, it has been shown that RCDCF achieves 19% and 20% reduced energy consumption at Cloud and Fog centers, respectively. Moreover, RCDCF has 2.1% and 1.3% increased correctness of data at Cloud and Fog data centers, respectively, when compared to the existing framework.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"26 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233505","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) devices installed in hospital direct data unceasingly; in this manner, energy usage augments with the number of broadcasts too. In this paper, Reliable Cluster based Data Collection Framework (RCDCF) for IoT-Big Data Healthcare Applications (HA) is developed. During clustering process, the connected IoT devices are grouped into clusters. In clustering technique, the available IoT devices are gathered into groups. The device with high battery capacity and processing ability is selected as a cluster head (CH). Each member of the cluster is allocated multiple slots by applying a general function pooled by the Fog node and the entire devices. To perceive and eliminate outliers from the sensor data, Density-based spatial clustering of applications with noise (DBSCAN) method is utilized. To forecast the objective and subjective behaviours of the equipments, a Random Forest Deep Neural Network (RF-DNN) based classification model is utilized. By experimental results, it has been shown that RCDCF achieves 19% and 20% reduced energy consumption at Cloud and Fog centers, respectively. Moreover, RCDCF has 2.1% and 1.3% increased correctness of data at Cloud and Fog data centers, respectively, when compared to the existing framework.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.