Jhon Cris Bonifacio, Clarence Joy Andaya, Daryl Magpantay
{"title":"On the j-Edge Intersection Graph of Cycle Graph","authors":"Jhon Cris Bonifacio, Clarence Joy Andaya, Daryl Magpantay","doi":"10.29020/nybg.ejpam.v16i4.4870","DOIUrl":null,"url":null,"abstract":"This paper defines a new class of graphs using the spanning subgraphs of a cycle graph as vertices. This class of graphs is called $j$-edge intersection graph of cycle graph, denoted by $E_{C_{(n,j)}}$. The vertex set of $E_{C_{(n,j)}}$ is the set of spanning subgraphs of cycle graph with $j$ edges where $n \\geq 3$ and $j$ is a nonnegative integer such that $1 \\leq j \\leq n$. Moreover, two distinct vertices are adjacent if they have exactly one edge in common. $E_{C_{(n,j)}}$ is considered as a simple graph. Furthermore, $E_{C_{(n,j)}}$ is characterized by the value of $j$ that is when $j=1$ or $\\lceil \\frac{n}{2} \\rceil < j \\leq n$ and $2 \\leq j \\leq \\lceil \\frac{n}{2} \\rceil$. When $j=1$ or $\\lceil \\frac{n}{2} \\rceil < j \\leq n$, the new graph only produced an empty graph. Hence, the proponents only considered the value when $2 \\leq j \\leq \\lceil \\frac{n}{2} \\rceil$ in determining the order and size of $E_{C_{(n,j)}}$. Moreover, this paper discusses necessary and sufficient conditions where the $j$-edge intersection graph of $C_n$ is isomorphic to the cycle graph. Furthermore, the researchers determined a lower bound for the independence number, and an upper bound for the domination number of $E_{C_{(n,j)}}$ when $j=2$.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper defines a new class of graphs using the spanning subgraphs of a cycle graph as vertices. This class of graphs is called $j$-edge intersection graph of cycle graph, denoted by $E_{C_{(n,j)}}$. The vertex set of $E_{C_{(n,j)}}$ is the set of spanning subgraphs of cycle graph with $j$ edges where $n \geq 3$ and $j$ is a nonnegative integer such that $1 \leq j \leq n$. Moreover, two distinct vertices are adjacent if they have exactly one edge in common. $E_{C_{(n,j)}}$ is considered as a simple graph. Furthermore, $E_{C_{(n,j)}}$ is characterized by the value of $j$ that is when $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$ and $2 \leq j \leq \lceil \frac{n}{2} \rceil$. When $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$, the new graph only produced an empty graph. Hence, the proponents only considered the value when $2 \leq j \leq \lceil \frac{n}{2} \rceil$ in determining the order and size of $E_{C_{(n,j)}}$. Moreover, this paper discusses necessary and sufficient conditions where the $j$-edge intersection graph of $C_n$ is isomorphic to the cycle graph. Furthermore, the researchers determined a lower bound for the independence number, and an upper bound for the domination number of $E_{C_{(n,j)}}$ when $j=2$.