On the j-Edge Intersection Graph of Cycle Graph

IF 1 Q1 MATHEMATICS
Jhon Cris Bonifacio, Clarence Joy Andaya, Daryl Magpantay
{"title":"On the j-Edge Intersection Graph of Cycle Graph","authors":"Jhon Cris Bonifacio, Clarence Joy Andaya, Daryl Magpantay","doi":"10.29020/nybg.ejpam.v16i4.4870","DOIUrl":null,"url":null,"abstract":"This paper defines a new class of graphs using the spanning subgraphs of a cycle graph as vertices. This class of graphs is called $j$-edge intersection graph of cycle graph, denoted by $E_{C_{(n,j)}}$. The vertex set of $E_{C_{(n,j)}}$ is the set of spanning subgraphs of cycle graph with $j$ edges where $n \\geq 3$ and $j$ is a nonnegative integer such that $1 \\leq j \\leq n$. Moreover, two distinct vertices are adjacent if they have exactly one edge in common. $E_{C_{(n,j)}}$ is considered as a simple graph. Furthermore, $E_{C_{(n,j)}}$ is characterized by the value of $j$ that is when $j=1$ or $\\lceil \\frac{n}{2} \\rceil < j \\leq n$ and $2 \\leq j \\leq \\lceil \\frac{n}{2} \\rceil$. When $j=1$ or $\\lceil \\frac{n}{2} \\rceil < j \\leq n$, the new graph only produced an empty graph. Hence, the proponents only considered the value when $2 \\leq j \\leq \\lceil \\frac{n}{2} \\rceil$ in determining the order and size of $E_{C_{(n,j)}}$. Moreover, this paper discusses necessary and sufficient conditions where the $j$-edge intersection graph of $C_n$ is isomorphic to the cycle graph. Furthermore, the researchers determined a lower bound for the independence number, and an upper bound for the domination number of $E_{C_{(n,j)}}$ when $j=2$.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper defines a new class of graphs using the spanning subgraphs of a cycle graph as vertices. This class of graphs is called $j$-edge intersection graph of cycle graph, denoted by $E_{C_{(n,j)}}$. The vertex set of $E_{C_{(n,j)}}$ is the set of spanning subgraphs of cycle graph with $j$ edges where $n \geq 3$ and $j$ is a nonnegative integer such that $1 \leq j \leq n$. Moreover, two distinct vertices are adjacent if they have exactly one edge in common. $E_{C_{(n,j)}}$ is considered as a simple graph. Furthermore, $E_{C_{(n,j)}}$ is characterized by the value of $j$ that is when $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$ and $2 \leq j \leq \lceil \frac{n}{2} \rceil$. When $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$, the new graph only produced an empty graph. Hence, the proponents only considered the value when $2 \leq j \leq \lceil \frac{n}{2} \rceil$ in determining the order and size of $E_{C_{(n,j)}}$. Moreover, this paper discusses necessary and sufficient conditions where the $j$-edge intersection graph of $C_n$ is isomorphic to the cycle graph. Furthermore, the researchers determined a lower bound for the independence number, and an upper bound for the domination number of $E_{C_{(n,j)}}$ when $j=2$.
关于循环图的j边相交图
本文用循环图的生成子图作为顶点,定义了一类新的图。这类图叫做 $j$-循环图的边相交图,表示为 $E_{C_{(n,j)}}$. 的顶点集 $E_{C_{(n,j)}}$ 循环图的生成子图的集合是 $j$ 边 $n \geq 3$ 和 $j$ 非负整数是这样的吗 $1 \leq j \leq n$. 此外,如果两个不同的顶点恰好有一条共同的边,那么它们就是相邻的。 $E_{C_{(n,j)}}$ 被认为是一个简单的图。此外, $E_{C_{(n,j)}}$ 特征值是 $j$ 这就是 $j=1$ 或 $\lceil \frac{n}{2} \rceil < j \leq n$ 和 $2 \leq j \leq \lceil \frac{n}{2} \rceil$. 什么时候 $j=1$ 或 $\lceil \frac{n}{2} \rceil < j \leq n$时,新图只生成一个空图。因此,支持者只考虑价值时 $2 \leq j \leq \lceil \frac{n}{2} \rceil$ 的顺序和大小 $E_{C_{(n,j)}}$. 此外,本文还讨论了实现这一目标的充分必要条件 $j$的-边相交图 $C_n$ 与循环图同构。此外,研究人员还确定了独立数的下界和支配数的上界 $E_{C_{(n,j)}}$ 什么时候 $j=2$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信