On the Number of Restricted One-to-One and Onto Functons Having Integral Coordinates

IF 1 Q1 MATHEMATICS
Mary Joy R. Latayada
{"title":"On the Number of Restricted One-to-One and Onto Functons Having Integral Coordinates","authors":"Mary Joy R. Latayada","doi":"10.29020/nybg.ejpam.v16i4.4901","DOIUrl":null,"url":null,"abstract":"Let $N_m$ be the set of positive integers $1, 2, \\cdots, m$ and $S \\subseteq N_m$. In 2000, J. Caumeran and R. Corcino made a thorough investigation on counting restricted functions $f_{|S}$ under each of the following conditions:\\begin{itemize}\\item[(\\textit{a})]$f(a) \\leq a$, $\\forall a \\in S$;\\item[(\\textit{b})] $f(a) \\leq g(a)$, $\\forall a \\in S$ where $g$ is any nonnegative real-valued continuous functions;\\item[(\\textit{c})] $g_1(a) \\leq f(a) \\leq g_2(a)$, $\\forall a \\in S$, where $g_1$ and $g_2$ are any nonnegative real-valued continuous functions.\\end{itemize}Several formulae and identities were also obtained by Caumeran using basic concepts in combinatorics.In this paper, we count those restricted functions under condition $f(a) \\leq a$, $\\forall a \\in S$, which is one-to-one and onto, and establish some formulas and identities parallel to those obtained by J. Caumeran and R. Corcino.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $N_m$ be the set of positive integers $1, 2, \cdots, m$ and $S \subseteq N_m$. In 2000, J. Caumeran and R. Corcino made a thorough investigation on counting restricted functions $f_{|S}$ under each of the following conditions:\begin{itemize}\item[(\textit{a})]$f(a) \leq a$, $\forall a \in S$;\item[(\textit{b})] $f(a) \leq g(a)$, $\forall a \in S$ where $g$ is any nonnegative real-valued continuous functions;\item[(\textit{c})] $g_1(a) \leq f(a) \leq g_2(a)$, $\forall a \in S$, where $g_1$ and $g_2$ are any nonnegative real-valued continuous functions.\end{itemize}Several formulae and identities were also obtained by Caumeran using basic concepts in combinatorics.In this paper, we count those restricted functions under condition $f(a) \leq a$, $\forall a \in S$, which is one-to-one and onto, and establish some formulas and identities parallel to those obtained by J. Caumeran and R. Corcino.
关于具有积分坐标的受限1 - 1和映上函数的个数
设$N_m$为正整数$1, 2, \cdots, m$和$S \subseteq N_m$的集合。2000年,J. Caumeran和R. Corcino在以下条件下对计数限制函数$f_{|S}$进行了深入的研究:\begin{itemize}\item[(\textit{a})]$f(a) \leq a$, $\forall a \in S$;\item[(\textit{b})] $f(a) \leq g(a)$, $\forall a \in S$其中$g$为任意非负实值连续函数;\item[(\textit{c})] $g_1(a) \leq f(a) \leq g_2(a)$, $\forall a \in S$,其中$g_1$和$g_2$为任意非负实值连续函数。\end{itemize}利用组合学的基本概念,用柯曼方法得到了几个公式和恒等式。在$f(a) \leq a$, $\forall a \in S$条件下,我们计算了这些限制函数,它们是一对一和映上的,并建立了一些与J. Caumeran和R. Corcino的公式和恒等式平行的公式和恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信