On the Diophantine Equation (p+n)^x+p^y=z^2 where p and p+n are Prime Numbers

IF 1 Q1 MATHEMATICS
Wachirarak Orosram
{"title":"On the Diophantine Equation (p+n)^x+p^y=z^2 where p and p+n are Prime Numbers","authors":"Wachirarak Orosram","doi":"10.29020/nybg.ejpam.v16i4.4822","DOIUrl":null,"url":null,"abstract":"In this paper, we study the Diophantine equation (p+n)^x+p^y=z^2, where p, p+n are prime numbers and n is a positive integer such that n equiv mod 4. In case p=3 and n=4, Rao{7} showed that the non-negative integer solutions are (x,y,z)=(0,1,2) and (1,2,4) In case p>3 and pequiv 3pmod4, if n-1 is a prime number and 2n-1 is not prime number, then the non-negative integer solution (x, y, z) is (0, 1,\\sqrt {p+1}) or ( 1, 0, \\sqrt{p+n+1}). In case pequiv 1pmod4, the non-negative integer solution (x,y,z) is also (0, 1,\\sqrt {p+1}) or ( 1,0, \\sqrt{p+n+1}).","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the Diophantine equation (p+n)^x+p^y=z^2, where p, p+n are prime numbers and n is a positive integer such that n equiv mod 4. In case p=3 and n=4, Rao{7} showed that the non-negative integer solutions are (x,y,z)=(0,1,2) and (1,2,4) In case p>3 and pequiv 3pmod4, if n-1 is a prime number and 2n-1 is not prime number, then the non-negative integer solution (x, y, z) is (0, 1,\sqrt {p+1}) or ( 1, 0, \sqrt{p+n+1}). In case pequiv 1pmod4, the non-negative integer solution (x,y,z) is also (0, 1,\sqrt {p+1}) or ( 1,0, \sqrt{p+n+1}).
关于丢番图方程(p+n)^x+p^y=z^2其中p和p+n是素数
本文研究了Diophantine方程(p+n)^x+p^y=z^2,其中p、p+n为素数,且n为正整数,使得n对4等价。在p=3和n=4的情况下,Rao{7}证明了非负整数解为(x,y,z)=(0,1,2)和(1,2,4);在p>3和pequiv 3pmod4的情况下,如果n-1是素数,2n-1不是素数,则非负整数解(x,y,z)为(0,1,\sqrt{p+ 1})或(1,0,\sqrt {p+n+1})。在pequiv 1pmod4的情况下,非负整数解(x,y,z)也是(0,1,\sqrt {p+1})或(1,0,\sqrt{p+n+1})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信