Grundy Total Hop Dominating Sequences in Graphs

IF 1 Q1 MATHEMATICS
Javier Hassan, Sergio R. Canoy, Jr.
{"title":"Grundy Total Hop Dominating Sequences in Graphs","authors":"Javier Hassan, Sergio R. Canoy, Jr.","doi":"10.29020/nybg.ejpam.v16i4.4877","DOIUrl":null,"url":null,"abstract":"Let G = (V (G), E(G)) be an undirected graph with γ(C) ̸= 1 for each component C of G. Let S = (v1, v2, · · · , vk) be a sequence of distint vertices of a graph G, and let Sˆ ={v1, v2, . . . , vk}. Then S is a legal open hop neighborhood sequence if N2G(vi) \\Si−1j=1 N2G(vj ) ̸= ∅for every i ∈ {2, . . . , k}. If, in addition, Sˆ is a total hop dominating set of G, then S is a Grundy total hop dominating sequence. The maximum length of a Grundy total hop dominating sequence in a graph G, denoted by γth gr(G), is the Grundy total hop domination number of G. In this paper, we show that the Grundy total hop domination number of a graph G is between the total hop domination number and twice the Grundy hop domination number of G. Moreover, determine values or bounds of the Grundy total hop domination number of some graphs.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":"25 8","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = (V (G), E(G)) be an undirected graph with γ(C) ̸= 1 for each component C of G. Let S = (v1, v2, · · · , vk) be a sequence of distint vertices of a graph G, and let Sˆ ={v1, v2, . . . , vk}. Then S is a legal open hop neighborhood sequence if N2G(vi) \Si−1j=1 N2G(vj ) ̸= ∅for every i ∈ {2, . . . , k}. If, in addition, Sˆ is a total hop dominating set of G, then S is a Grundy total hop dominating sequence. The maximum length of a Grundy total hop dominating sequence in a graph G, denoted by γth gr(G), is the Grundy total hop domination number of G. In this paper, we show that the Grundy total hop domination number of a graph G is between the total hop domination number and twice the Grundy hop domination number of G. Moreover, determine values or bounds of the Grundy total hop domination number of some graphs.
图中的Grundy全跳支配序列
设G = (V (G), E(G))是一个无向图,对G的每个分量C γ(C) = 1,设S = (v1, v2,···,vk)是图G的不同顶点的序列,设S ={v1, v2,…, vk}。则当N2G(vi) \Si−1j=1 N2G(vj)∈{2,…时,S是合法的开跳邻域序列。k}。另外,如果S是G的一个全跳控制集,则S是Grundy全跳控制序列。图G中Grundy总跳支配序列的最大长度用γth gr(G)表示为G的Grundy总跳支配数。本文证明了图G的Grundy总跳支配数介于G的总跳支配数和G的Grundy总跳支配数的两倍之间,并确定了一些图的Grundy总跳支配数的值或界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信