Certified Perfect Domination in Graphs

IF 1 Q1 MATHEMATICS
Jamil Hamja
{"title":"Certified Perfect Domination in Graphs","authors":"Jamil Hamja","doi":"10.29020/nybg.ejpam.v16i4.4894","DOIUrl":null,"url":null,"abstract":"Let $ G = (V(G),E(G)) $ be a simple connected graph. A set $ S \\subseteq V(G) $ is called a certified perfect dominating set of $ G $ if every vertex $ v \\in V(G)\\setminus S $ is dominated by exactly one element $ u \\in S $, such that $ u $ has either zero or at least two neighbors in $ V(G)\\setminus S $. The minimum cardinality of a certified perfect dominating set of $ G $ is called the \\textit{certified perfect domination number} of $ G $ and denoted by $ \\gamma_{cerp}(G) $. A certified perfect dominating set $ S $ of $ G $ with $ \\lvert S \\rvert = \\gamma_{cerp}(G) $ is called a $ \\gamma_{cerp} $-set. In this paper, the author focuses on several key aspects: a characterization of the certified perfect dominating set, determining the exact values of the certified perfect domination number for specific graphs, and investigating the certified perfect domination number of graphs resulting from the join of two graphs. Furthermore, some relationships between the certified dominating set, the perfect dominating set, and the certified perfect dominating set of a graph $ G $ are established.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":"2 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ G = (V(G),E(G)) $ be a simple connected graph. A set $ S \subseteq V(G) $ is called a certified perfect dominating set of $ G $ if every vertex $ v \in V(G)\setminus S $ is dominated by exactly one element $ u \in S $, such that $ u $ has either zero or at least two neighbors in $ V(G)\setminus S $. The minimum cardinality of a certified perfect dominating set of $ G $ is called the \textit{certified perfect domination number} of $ G $ and denoted by $ \gamma_{cerp}(G) $. A certified perfect dominating set $ S $ of $ G $ with $ \lvert S \rvert = \gamma_{cerp}(G) $ is called a $ \gamma_{cerp} $-set. In this paper, the author focuses on several key aspects: a characterization of the certified perfect dominating set, determining the exact values of the certified perfect domination number for specific graphs, and investigating the certified perfect domination number of graphs resulting from the join of two graphs. Furthermore, some relationships between the certified dominating set, the perfect dominating set, and the certified perfect dominating set of a graph $ G $ are established.
证明完美支配图
设$ G = (V(G),E(G)) $为简单连通图。如果每个顶点$ v \in V(G)\setminus S $只被一个元素$ u \in S $支配,使得$ u $在$ V(G)\setminus S $中有0个或至少两个邻居,则集合$ S \subseteq V(G) $被称为$ G $的证明完全支配集。$ G $的证明完全支配集的最小基数称为$ G $的\textit{证明完全支配数},用$ \gamma_{cerp}(G) $表示。具有$ \lvert S \rvert = \gamma_{cerp}(G) $的$ G $的证明完全支配集$ S $称为$ \gamma_{cerp} $ -集。在本文中,作者着重于几个关键方面:证明完美支配集的表征,确定特定图的证明完美支配数的确切值,以及研究由两个图的连接所产生的图的证明完美支配数。进一步,建立了图$ G $的认证完美控制集、认证完美控制集和认证完美控制集之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信