TRAINING OF YOLOV5 NEURAL NETWORK FOR PEAR DETECTION IN ORCHARD

Artis Fribergs, Edmunds Lukaševics, Guntis Lielbārdis, Sergejs Kodors
{"title":"TRAINING OF YOLOV5 NEURAL NETWORK FOR PEAR DETECTION IN ORCHARD","authors":"Artis Fribergs, Edmunds Lukaševics, Guntis Lielbārdis, Sergejs Kodors","doi":"10.17770/het2023.27.7371","DOIUrl":null,"url":null,"abstract":"A fruit-growing is an important branch of agriculture for various reasons. Fruits provide essential nutrients and vitamins to our diet, and they are also a significant source of income for fruit-growers. To improve the efficiency of fruit cultivation, we trained a pear detection neural network with YOLOv5 architecture using a dataset from the project lzp-2021/1-0134. The dataset contained 1273 photographs of pear trees with image sizes 640x640px. We had trained the neural network model YOLOv5m five times and achieved the best result equal to mAP@0.5 0.8 and mAP@0.5:0.95 0.43. The use of artificial intelligence in fruit cultivation can help to optimize the planning of fruit picking, contributing to the precision horticulture.","PeriodicalId":472464,"journal":{"name":"Cilvēks. Vide. Tehnoloģijas","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cilvēks. Vide. Tehnoloģijas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17770/het2023.27.7371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fruit-growing is an important branch of agriculture for various reasons. Fruits provide essential nutrients and vitamins to our diet, and they are also a significant source of income for fruit-growers. To improve the efficiency of fruit cultivation, we trained a pear detection neural network with YOLOv5 architecture using a dataset from the project lzp-2021/1-0134. The dataset contained 1273 photographs of pear trees with image sizes 640x640px. We had trained the neural network model YOLOv5m five times and achieved the best result equal to mAP@0.5 0.8 and mAP@0.5:0.95 0.43. The use of artificial intelligence in fruit cultivation can help to optimize the planning of fruit picking, contributing to the precision horticulture.
yolov5神经网络在果园梨检测中的训练
由于种种原因,水果种植是农业的一个重要分支。水果为我们的饮食提供必需的营养和维生素,它们也是水果种植者的重要收入来源。为了提高果实栽培的效率,我们使用lzp-2021/1-0134项目数据集训练了YOLOv5架构的梨检测神经网络。该数据集包含1273张梨树照片,图像尺寸为640x640px。我们对神经网络模型YOLOv5m进行了5次训练,得到的最佳结果为mAP@0.5 0.8和mAP@0.5:0.95 0.43。人工智能在水果种植中的应用可以优化水果采摘的规划,有助于实现精准园艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信