Adversarial Robustness of Sparse Local Lipschitz Predictors

IF 1.9 Q1 MATHEMATICS, APPLIED
Ramchandran Muthukumar, Jeremias Sulam
{"title":"Adversarial Robustness of Sparse Local Lipschitz Predictors","authors":"Ramchandran Muthukumar, Jeremias Sulam","doi":"10.1137/22m1478835","DOIUrl":null,"url":null,"abstract":"This work studies the adversarial robustness of parametric functions composed of a linear predictor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL), an extension of local Lipschitz continuity that better captures the stability and reduced effective dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of structure, given by the sparsity pattern in the representation map, and include several popular hypothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLU networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform bounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"971 ","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1478835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

This work studies the adversarial robustness of parametric functions composed of a linear predictor and a nonlinear representation map. Our analysis relies on sparse local Lipschitzness (SLL), an extension of local Lipschitz continuity that better captures the stability and reduced effective dimensionality of predictors upon local perturbations. SLL functions preserve a certain degree of structure, given by the sparsity pattern in the representation map, and include several popular hypothesis classes, such as piecewise linear models, Lasso and its variants, and deep feedforward ReLU networks. Compared with traditional Lipschitz analysis, we provide a tighter robustness certificate on the minimal energy of an adversarial example, as well as tighter data-dependent nonuniform bounds on the robust generalization error of these predictors. We instantiate these results for the case of deep neural networks and provide numerical evidence that supports our results, shedding new insights into natural regularization strategies to increase the robustness of these models.
稀疏局部Lipschitz预测器的对抗鲁棒性
本文研究了由线性预测器和非线性表示映射组成的参数函数的对抗鲁棒性。我们的分析依赖于稀疏局部Lipschitz (SLL),这是局部Lipschitz连续性的一种扩展,可以更好地捕获局部扰动下预测器的稳定性和降低的有效维数。SLL函数保留了一定程度的结构,由表示图中的稀疏模式给出,并包括几个流行的假设类,如分段线性模型、Lasso及其变体和深度前馈ReLU网络。与传统的Lipschitz分析相比,我们提供了一个更严格的对抗性样本最小能量的鲁棒性证明,以及这些预测器的鲁棒泛化误差的更严格的数据依赖非一致界。我们为深度神经网络实例化了这些结果,并提供了支持我们结果的数值证据,为自然正则化策略提供了新的见解,以增加这些模型的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信