Normal Surfaces along a Curve on a Surface in Euclidean 3-Space

IF 0.7 Q2 MATHEMATICS
M. Khalifa Saad, R. A. Abdel-Baky
{"title":"Normal Surfaces along a Curve on a Surface in Euclidean 3-Space","authors":"M. Khalifa Saad, R. A. Abdel-Baky","doi":"10.28924/2291-8639-21-2023-119","DOIUrl":null,"url":null,"abstract":"Curves on surfaces and their frames play an important role in differential geometry and in many branches of science such as mechanics and physics. So, we are interested in studying one of these surfaces along a curve lying on a surface. In this paper, we define a surface normal to a surface along a curve lying on a surface in Euclidean 3-space E3. Then, we analyze the necessary and sufficient conditions for that surface to be a ruled surface. Finally, we illustrate the convenience and efficiency of this approach with some representative examples.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"180 ","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Curves on surfaces and their frames play an important role in differential geometry and in many branches of science such as mechanics and physics. So, we are interested in studying one of these surfaces along a curve lying on a surface. In this paper, we define a surface normal to a surface along a curve lying on a surface in Euclidean 3-space E3. Then, we analyze the necessary and sufficient conditions for that surface to be a ruled surface. Finally, we illustrate the convenience and efficiency of this approach with some representative examples.
欧几里得三维空间中曲面上沿曲线的法线曲面
曲面上的曲线及其框架在微分几何和许多科学分支如力学和物理学中起着重要的作用。所以,我们感兴趣的是沿着曲面上的曲线研究其中一个曲面。在欧氏三维空间E3中,我们定义了一个曲面的法向曲面。然后,分析了该曲面为直纹曲面的充分必要条件。最后,我们用一些典型的例子说明了这种方法的便利性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信