Experimental Investigations to Detection of Liver Cancer Using ResUNet

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Koteswara Rao Kodepogu, Sandhya Rani Muthineni, Charisma Kethineedi, Jasthi Tejesh, Joshitha Sai Uppalapati
{"title":"Experimental Investigations to Detection of Liver Cancer Using ResUNet","authors":"Koteswara Rao Kodepogu, Sandhya Rani Muthineni, Charisma Kethineedi, Jasthi Tejesh, Joshitha Sai Uppalapati","doi":"10.18280/ts.400548","DOIUrl":null,"url":null,"abstract":"The detection and identification of cancerous tissue is currently a time-consuming and challenging process. The segmentation of liver lesions from cancer CT images can aid in treatment planning and clinical response monitoring. This study employs Residual U-Net, a powerful tool that has been adapted and applied for the segmentation of liver tumors, addressing the ongoing challenge in liver cancer diagnosis. Segmentation of liver lesions in CT images can be utilized to assess tumor burden, predict therapeutic outcomes, and monitor clinical response. In this research, the liver was extracted from the CT image using ResUNet, and the tumor was subsequently segmented using another ResUNet applied to the extracted Region of Interest (ROI). This approach effectively extracts features from Inception by combining residual and pre-trained weights. The deep learning system elucidates the underlying concept by highlighting the components contributing to the inner layer analysis and prediction, and by revealing a section of the decision-making process employed by pre-trained deep neural networks.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"151 ","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400548","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and identification of cancerous tissue is currently a time-consuming and challenging process. The segmentation of liver lesions from cancer CT images can aid in treatment planning and clinical response monitoring. This study employs Residual U-Net, a powerful tool that has been adapted and applied for the segmentation of liver tumors, addressing the ongoing challenge in liver cancer diagnosis. Segmentation of liver lesions in CT images can be utilized to assess tumor burden, predict therapeutic outcomes, and monitor clinical response. In this research, the liver was extracted from the CT image using ResUNet, and the tumor was subsequently segmented using another ResUNet applied to the extracted Region of Interest (ROI). This approach effectively extracts features from Inception by combining residual and pre-trained weights. The deep learning system elucidates the underlying concept by highlighting the components contributing to the inner layer analysis and prediction, and by revealing a section of the decision-making process employed by pre-trained deep neural networks.
reunet检测肝癌的实验研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Traitement Du Signal
Traitement Du Signal 工程技术-工程:电子与电气
自引率
21.10%
发文量
162
审稿时长
>12 weeks
期刊介绍: The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies. The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to: Signal processing Imaging Visioning Control Filtering Compression Data transmission Noise reduction Deconvolution Prediction Identification Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信