Jurandir Marcos Sá de Sousa, Milton Pereira, Juliane Ribeiro da Cruz, Anselmo Thiesen Júnior, Henrique Santos Ferreira, Jhonattan Gutjahr
{"title":"Influence of post-processing heat-treatment on the mechanical performance of AISI 410L stainless steel manufactured by the L-DED process","authors":"Jurandir Marcos Sá de Sousa, Milton Pereira, Juliane Ribeiro da Cruz, Anselmo Thiesen Júnior, Henrique Santos Ferreira, Jhonattan Gutjahr","doi":"10.2351/7.0001135","DOIUrl":null,"url":null,"abstract":"Additively manufactured martensitic stainless steel components can combine complex geometry with superior mechanical and corrosion performance. In this work, the mechanical performance of AISI 410L processed by laser directed energy deposition (L-DED) additive manufacturing using previously optimized parameters is assessed. Microstructure, hardness, tensile strength, and Charpy impact toughness are evaluated in the as-built and heat-treated conditions. Four heat-treatment routes are investigated: (I) austenitization and water quenched, and austenitization, water quenched, and tempered at (II) 300, (III) 450, and (IV) 600 °C, followed by air cooling. The results show that, for tempering temperatures up to 450 °C, the hardness, yield strength, and ultimate tensile strength show an increasing trend when compared with the as-built condition and reference commercial standard (annealed AISI 410) because of microstructure refinement induced by recrystallization. Tempering at 600 °C, on the other hand, enhances the ductility of the specimens, accounting for an increased deformation until fracture and superior Charpy impact toughness. In summary, this work demonstrates that, for all tested conditions, the tensile strength of the AISI 410L additively manufactured by L-DED outperforms that of the standardized commercial AISI 410 martensitic stainless steel, and that post-processing heat-treatments can be used to further enhance toughness and ductility, making it even more competitive.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additively manufactured martensitic stainless steel components can combine complex geometry with superior mechanical and corrosion performance. In this work, the mechanical performance of AISI 410L processed by laser directed energy deposition (L-DED) additive manufacturing using previously optimized parameters is assessed. Microstructure, hardness, tensile strength, and Charpy impact toughness are evaluated in the as-built and heat-treated conditions. Four heat-treatment routes are investigated: (I) austenitization and water quenched, and austenitization, water quenched, and tempered at (II) 300, (III) 450, and (IV) 600 °C, followed by air cooling. The results show that, for tempering temperatures up to 450 °C, the hardness, yield strength, and ultimate tensile strength show an increasing trend when compared with the as-built condition and reference commercial standard (annealed AISI 410) because of microstructure refinement induced by recrystallization. Tempering at 600 °C, on the other hand, enhances the ductility of the specimens, accounting for an increased deformation until fracture and superior Charpy impact toughness. In summary, this work demonstrates that, for all tested conditions, the tensile strength of the AISI 410L additively manufactured by L-DED outperforms that of the standardized commercial AISI 410 martensitic stainless steel, and that post-processing heat-treatments can be used to further enhance toughness and ductility, making it even more competitive.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.