Applications of Fuzzy Differential Equations on Vibrating Spring Mass System

IF 0.7 Q2 MATHEMATICS
B. Divya, K. Ganesan
{"title":"Applications of Fuzzy Differential Equations on Vibrating Spring Mass System","authors":"B. Divya, K. Ganesan","doi":"10.28924/2291-8639-21-2023-120","DOIUrl":null,"url":null,"abstract":"Modelling several real-world issues in the fuzzy world extensively uses ordinary differential equations. In this paper, a mechanical vibration system with the given mass, spring constant, damping and external force is modelled as a second-order ordinary differential equation. Due to measurement errors, the initial displacement of the string is approximate and assumed to be a fuzzy number. A fuzzy version of the Sumudu transform procedure is used to figure out this vibrating spring-mass system with fuzzy initial displacement. The output is displayed as a table at various computational stages. The consequences are visibly presented diagrammatically for different values of r and t. There is a good agreement between the computed results and the analytical solution.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"73 12 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling several real-world issues in the fuzzy world extensively uses ordinary differential equations. In this paper, a mechanical vibration system with the given mass, spring constant, damping and external force is modelled as a second-order ordinary differential equation. Due to measurement errors, the initial displacement of the string is approximate and assumed to be a fuzzy number. A fuzzy version of the Sumudu transform procedure is used to figure out this vibrating spring-mass system with fuzzy initial displacement. The output is displayed as a table at various computational stages. The consequences are visibly presented diagrammatically for different values of r and t. There is a good agreement between the computed results and the analytical solution.
模糊微分方程在振动弹簧质量系统中的应用
在模糊世界中对一些现实问题的建模广泛使用常微分方程。本文将给定质量、弹簧常数、阻尼和外力的机械振动系统建立为二阶常微分方程。由于测量误差,管柱的初始位移是近似的,并假定为模糊数。采用模糊版的Sumudu变换方法求解具有模糊初始位移的振动弹簧-质量系统。在不同的计算阶段,输出显示为一个表。对于不同的r和t值,计算结果用图表清晰地表示出来。计算结果与解析解之间有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信