Contour Integration for Eigenvector Nonlinearities

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Rob Claes, Karl Meerbergen, Simon Telen
{"title":"Contour Integration for Eigenvector Nonlinearities","authors":"Rob Claes, Karl Meerbergen, Simon Telen","doi":"10.1137/22m1497985","DOIUrl":null,"url":null,"abstract":"Solving polynomial eigenvalue problems with eigenvector nonlinearities (PEPv) is an interesting computational challenge, outside the reach of the well-developed methods for nonlinear eigenvalue problems. We present a natural generalization of these methods which leads to a contour integration approach for computing all eigenvalues of a PEPv in a compact region of the complex plane. Our methods can be used to solve any suitably generic system of polynomial or rational function equations.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"46 2","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1497985","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Solving polynomial eigenvalue problems with eigenvector nonlinearities (PEPv) is an interesting computational challenge, outside the reach of the well-developed methods for nonlinear eigenvalue problems. We present a natural generalization of these methods which leads to a contour integration approach for computing all eigenvalues of a PEPv in a compact region of the complex plane. Our methods can be used to solve any suitably generic system of polynomial or rational function equations.
特征向量非线性的轮廓积分
求解具有特征向量非线性(PEPv)的多项式特征值问题是一个有趣的计算挑战,超出了非线性特征值问题的成熟方法的范围。我们提出了这些方法的自然推广,这导致了计算复平面紧致区域中PEPv的所有特征值的轮廓积分方法。我们的方法可用于求解任何适当的多项式或有理函数方程的一般系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信