Asymptotics of Multivariate Sequences IV: Generating Functions with Poles on a Hyperplane Arrangement

Pub Date : 2023-06-13 DOI:10.1007/s00026-023-00654-2
Yuliy Baryshnikov, Stephen Melczer, Robin Pemantle
{"title":"Asymptotics of Multivariate Sequences IV: Generating Functions with Poles on a Hyperplane Arrangement","authors":"Yuliy Baryshnikov,&nbsp;Stephen Melczer,&nbsp;Robin Pemantle","doi":"10.1007/s00026-023-00654-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(F(z_1,\\dots ,z_d)\\)</span> be the quotient of an analytic function with a product of linear functions. Working in the framework of analytic combinatorics in several variables, we compute asymptotic formulae for the Taylor coefficients of <i>F</i> using multivariate residues and saddle-point approximations. Because the singular set of <i>F</i> is the union of hyperplanes, we are able to make explicit the topological decompositions which arise in the multivariate singularity analysis. In addition to effective and explicit asymptotic results, we provide the first results on transitions between different asymptotic regimes, and provide the first software package to verify and compute asymptotics in non-smooth cases of analytic combinatorics in several variables. It is also our hope that this paper will serve as an entry to the more advanced corners of analytic combinatorics in several variables for combinatorialists.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00654-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(F(z_1,\dots ,z_d)\) be the quotient of an analytic function with a product of linear functions. Working in the framework of analytic combinatorics in several variables, we compute asymptotic formulae for the Taylor coefficients of F using multivariate residues and saddle-point approximations. Because the singular set of F is the union of hyperplanes, we are able to make explicit the topological decompositions which arise in the multivariate singularity analysis. In addition to effective and explicit asymptotic results, we provide the first results on transitions between different asymptotic regimes, and provide the first software package to verify and compute asymptotics in non-smooth cases of analytic combinatorics in several variables. It is also our hope that this paper will serve as an entry to the more advanced corners of analytic combinatorics in several variables for combinatorialists.

Abstract Image

Abstract Image

分享
查看原文
多变量序列渐近论 IV:超平面排列上有极点的生成函数
让 \(F(z_1,\dots ,z_d)\)成为解析函数与线性函数乘积的商。在多变量解析组合学的框架下,我们利用多变量残差和鞍点逼近计算 F 的泰勒系数的渐近公式。由于 F 的奇异集是超平面的结合,因此我们能够明确拓扑分解,而拓扑分解出现在多元奇异性分析中。除了有效和明确的渐近结果之外,我们还首次提供了不同渐近状态之间的转换结果,并提供了第一个软件包,用于验证和计算多变量分析组合学非光滑情况下的渐近结果。我们也希望这篇论文能成为组合学家进入多变量解析组合学更高级领域的切入点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信