Mojtaba Kamarlouei, Thiago Hallak, Jose Gaspar, Miguel Calvario, Carlos Guedes Soares
{"title":"Torus-Shaped Wave Energy Converter Attached to a Hinged Arm","authors":"Mojtaba Kamarlouei, Thiago Hallak, Jose Gaspar, Miguel Calvario, Carlos Guedes Soares","doi":"10.1115/1.4062624","DOIUrl":null,"url":null,"abstract":"Abstract This study presents the adaptation of a torus-shaped prime mover of a wave energy converter to an onshore or nearshore fixed platform by a hinged arm, with the objective of providing more favorable conditions for device survivability at extreme sea state. An optimization code is developed to obtain the best prime mover and arm geometries, as well as the power take-off parameters, with the objective to maximize the total absorbed power. In this paper, the power take-off system is modeled as a simplified damper and spring system, where the parameters are optimized for the power absorption of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. The results indicate that better survivability performance may be achieved with the torus-shaped prime mover in comparison to a conventional one without a moonpool, despite a relatively lower wave-absorbed power.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"158 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study presents the adaptation of a torus-shaped prime mover of a wave energy converter to an onshore or nearshore fixed platform by a hinged arm, with the objective of providing more favorable conditions for device survivability at extreme sea state. An optimization code is developed to obtain the best prime mover and arm geometries, as well as the power take-off parameters, with the objective to maximize the total absorbed power. In this paper, the power take-off system is modeled as a simplified damper and spring system, where the parameters are optimized for the power absorption of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. The results indicate that better survivability performance may be achieved with the torus-shaped prime mover in comparison to a conventional one without a moonpool, despite a relatively lower wave-absorbed power.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.