Non-commutative ambits and equivariant compactifications

IF 0.7 2区 数学 Q2 MATHEMATICS
Alexandru Chirvasitu
{"title":"Non-commutative ambits and equivariant compactifications","authors":"Alexandru Chirvasitu","doi":"10.4171/jncg/536","DOIUrl":null,"url":null,"abstract":"We prove that an action $\\rho:A\\to M(C\\_0(\\mathbb{G})\\otimes A)$ of a locally compact quantum group on a $C^\\*$-algebra has a universal equivariant compactification and prove a number of other category-theoretic results on $\\mathbb{G}$-equivariant compactifications: that the categories compactifications of $\\rho$ and $A$, respectively, are locally presentable (hence complete and cocomplete), that the forgetful functor between them is a colimit-creating left adjoint, and that epimorphisms therein are surjective and injections are regular monomorphisms. When $\\mathbb{G}$ is regular, coamenable we also show that the forgetful functor from unital $\\mathbb{G}$-$C^$-algebras to unital $C^$-algebras creates finite limits and is comonadic and that the monomorphisms in the former category are injective.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"38 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/536","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that an action $\rho:A\to M(C\_0(\mathbb{G})\otimes A)$ of a locally compact quantum group on a $C^\*$-algebra has a universal equivariant compactification and prove a number of other category-theoretic results on $\mathbb{G}$-equivariant compactifications: that the categories compactifications of $\rho$ and $A$, respectively, are locally presentable (hence complete and cocomplete), that the forgetful functor between them is a colimit-creating left adjoint, and that epimorphisms therein are surjective and injections are regular monomorphisms. When $\mathbb{G}$ is regular, coamenable we also show that the forgetful functor from unital $\mathbb{G}$-$C^$-algebras to unital $C^$-algebras creates finite limits and is comonadic and that the monomorphisms in the former category are injective.
非交换域与等变紧化
证明了一个局部紧量子群在$C^\*$ -代数上的作用$\rho:A\to M(C\_0(\mathbb{G})\otimes A)$具有一个全称等变紧化,并证明了关于$\mathbb{G}$ -等变紧化的其他一些范畴论结果:分别为$\rho$和$A$的范畴紧化是局部可呈现的(因此是完备的和协完备的),它们之间的遗忘函子是产生共限的左伴子,其中的上纯是满射,而注入是正则单态。当$\mathbb{G}$是正则时,我们还证明了从一元$\mathbb{G}$ - $C^$ -代数到一元$C^$ -代数的遗忘函子产生有限极限,并且是共态的,并且前一类中的单态是内射的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信