Perovskite Oxide Thermoelectric Module - A Way Forward

Abanti Nag
{"title":"Perovskite Oxide Thermoelectric Module - A Way Forward","authors":"Abanti Nag","doi":"10.21926/cr.2304024","DOIUrl":null,"url":null,"abstract":"In the era of renewable and sustainable energy, perovskite materials remain pioneers as energy harvesting materials, be it thermoelectric waste heat harvesting or photovoltaic solar cell application. Oxide perovskite material is an emerging thermoelectric material in solving energy shortage issues through waste heat recovery. The chemical and structural stabilities, oxidation resistance, and cost-effective and straightforward manufacturing process are a few advantages of the oxide-based thermoelectric materials. The perovskite thermoelectric materials and module thereof does not require any vacuum bagging for operation at high temperature, irrespective of the application environment. Perovskite CaMnO<sub>3</sub> displays a high Seebeck coefficient (<em>S</em>~-350 μV/K) due to correlated electron structure and low thermal conductivity (3 W m<sup>-1</sup> K<sup>-1</sup>) but high electrical resistivity simultaneously. The electrical resistivity of CaMnO<sub>3</sub> can be tuned by electron doping at the Ca-site and Mn-site. Electron doping by substituting Mn<sup>3+</sup> with trivalent rare-earth ions increases the carrier concentration in the CaMnO<sub>3</sub> system by partially reducing Mn<sup>4+</sup> to Mn<sup>3+</sup>, improving electrical conductivity without altering the Seebeck coefficient. The dual-doped Ca<sub>1</sub><sub>-</sub><sub>x</sub>Yb<sub>x/2</sub>Lu<sub>x/2</sub>MnO<sub>3</sub>-based <em>n</em>-type perovskite thermoelectric material showed a much higher power factor than undoped CaMnO<sub>3</sub> and proved to be an efficient perovskite from the application point of view. The thermoelectric module, in combination with CaMnO<sub>3</sub> as an <em>n</em>-type element and Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> or doped-Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> as the <em>p</em>-type element, is the most efficient device reported to date. The lab-scale power generation experiment is carried out for 4-element and 36-element modules consisting of perovskite Ca<sub>1</sub><sub>-</sub><sub>x</sub>Yb<sub>x/2</sub>Lu<sub>x/2</sub>MnO<sub>3</sub> as <em>n</em>-type elements and Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> as <em>p</em>-type elements. The results showed the challenges of up-scaling the perovskite module for high-temperature waste heat harvesting applications.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2304024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of renewable and sustainable energy, perovskite materials remain pioneers as energy harvesting materials, be it thermoelectric waste heat harvesting or photovoltaic solar cell application. Oxide perovskite material is an emerging thermoelectric material in solving energy shortage issues through waste heat recovery. The chemical and structural stabilities, oxidation resistance, and cost-effective and straightforward manufacturing process are a few advantages of the oxide-based thermoelectric materials. The perovskite thermoelectric materials and module thereof does not require any vacuum bagging for operation at high temperature, irrespective of the application environment. Perovskite CaMnO3 displays a high Seebeck coefficient (S~-350 μV/K) due to correlated electron structure and low thermal conductivity (3 W m-1 K-1) but high electrical resistivity simultaneously. The electrical resistivity of CaMnO3 can be tuned by electron doping at the Ca-site and Mn-site. Electron doping by substituting Mn3+ with trivalent rare-earth ions increases the carrier concentration in the CaMnO3 system by partially reducing Mn4+ to Mn3+, improving electrical conductivity without altering the Seebeck coefficient. The dual-doped Ca1-xYbx/2Lux/2MnO3-based n-type perovskite thermoelectric material showed a much higher power factor than undoped CaMnO3 and proved to be an efficient perovskite from the application point of view. The thermoelectric module, in combination with CaMnO3 as an n-type element and Ca3Co4O9 or doped-Ca3Co4O9 as the p-type element, is the most efficient device reported to date. The lab-scale power generation experiment is carried out for 4-element and 36-element modules consisting of perovskite Ca1-xYbx/2Lux/2MnO3 as n-type elements and Ca3Co4O9 as p-type elements. The results showed the challenges of up-scaling the perovskite module for high-temperature waste heat harvesting applications.
钙钛矿氧化物热电模块-前进的道路
在可再生能源和可持续能源的时代,钙钛矿材料作为能量收集材料,无论是热电余热收集还是光伏太阳能电池的应用,都是先锋。氧化物钙钛矿材料是一种新兴的热电材料,通过余热回收来解决能源短缺问题。氧化物基热电材料具有化学结构稳定、抗氧化性好、成本效益高、制造工艺简单等优点。钙钛矿热电材料及其组件在高温下不需要真空装袋,无论应用环境如何。钙钛矿CaMnO< sub> 3 & lt; / sub>由于相关的电子结构和较低的热导率(3 W m<sup>-1</sup>K<sup>-1</sup>),同时具有高电阻率。CaMnO<sub>3</sub>可以通过在ca位点和mn位点掺杂电子来调谐。取代Mn<sup>3+</sup>三价稀土离子的加入增加了CaMnO<sub>3</sub>通过部分降低Mn<sup>4+</sup>到Mn<sup>3+</sup>,在不改变塞贝克系数的情况下提高电导率。双掺杂Ca<sub>1</sub><sub>-</sub> x</sub> y >x/2</sub>Lu<sub>x/2</sub>MnO<sub>3</sub>基<em>n</em>型钙钛矿热电材料的功率因数比未掺杂的CaMnO<sub>3</sub>从应用的角度证明了它是一种高效的钙钛矿。热电模块,结合CaMnO<sub>3</sub>作为<em>n</em> type元素和Ca<sub>3</sub>Co<sub>4</sub> 0 <sub>9</sub>或doped-Ca< sub> 3 & lt; / sub> Co< sub> 4 & lt; / sub> O< sub> 9 & lt; / sub>作为<em>p</em>类型元素,是迄今为止报道的最有效的设备。对钙钛矿组成的4元素和36元素模块进行了实验室规模的发电实验:Ca<sub>1& gt; /sub><sub>-</sub> x& gt; /sub> y<sub>x/2</sub>Lu<sub>x/2</sub>MnO<sub>3</sub>& lt; em> n< / em>类型元素和Ca< sub> 3 & lt; / sub> Co< sub> 4 & lt; / sub> O< sub> 9 & lt; / sub>作为<em> </em>-type元素。结果表明,在高温废热收集应用中,钙钛矿模块的规模扩大存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信