Marius Eilenberger, Hariharan Gunasekar, Daniel Gomez Toro, Cornelie Bänsch
{"title":"Analysis of the thermal design of a COTS-based modular battery system for satellites by thermal vacuum testing","authors":"Marius Eilenberger, Hariharan Gunasekar, Daniel Gomez Toro, Cornelie Bänsch","doi":"10.1007/s12567-023-00526-8","DOIUrl":null,"url":null,"abstract":"Abstract The qualification of components for satellite applications is a costly process due to the extreme conditions that must be endured in space. Therefore, space market access of battery technology innovations is often inhibited. However, modern battery technologies offer great advantages for satellite applications. In this work, a commercial off-the-shelf (COTS) based and modular lithium-ion battery system for satellites in Low Earth Orbit (LEO) is presented. A comparative analysis to evaluate system parameters and functionality of the proposed battery system and literature data is performed. A thermal vacuum test campaign is carried out to investigate the behaviour under LEO relevant conditions and to achieve qualification of the system performance according to the ECSS (European Cooperation for Space Standardization) standard. The tested system consists of two modules with 28 V nominal voltage and eight battery cells each. Experiments were conducted inside a vacuum chamber. The battery system was charged and discharged in temperatures from 0 °C to 45 °C in a high-vacuum for three weeks. The influence of the battery management electronics, the behaviour of the cells and the heating were analyzed. The cell temperatures stayed in the operating limit during 3.5 A and 10 A cycling. The battery system, however, exceeded the cell’s upper operating limit with a 40 °C baseplate and 3.5 A charging. Despite the dense system architecture with electronics between the cells the battery system can safely deliver power in a broad temperature range. Further investigations regarding safety and failure modes are necessary, along with advancements on software and state estimation algorithms.","PeriodicalId":44940,"journal":{"name":"CEAS Space Journal","volume":"63 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEAS Space Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12567-023-00526-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The qualification of components for satellite applications is a costly process due to the extreme conditions that must be endured in space. Therefore, space market access of battery technology innovations is often inhibited. However, modern battery technologies offer great advantages for satellite applications. In this work, a commercial off-the-shelf (COTS) based and modular lithium-ion battery system for satellites in Low Earth Orbit (LEO) is presented. A comparative analysis to evaluate system parameters and functionality of the proposed battery system and literature data is performed. A thermal vacuum test campaign is carried out to investigate the behaviour under LEO relevant conditions and to achieve qualification of the system performance according to the ECSS (European Cooperation for Space Standardization) standard. The tested system consists of two modules with 28 V nominal voltage and eight battery cells each. Experiments were conducted inside a vacuum chamber. The battery system was charged and discharged in temperatures from 0 °C to 45 °C in a high-vacuum for three weeks. The influence of the battery management electronics, the behaviour of the cells and the heating were analyzed. The cell temperatures stayed in the operating limit during 3.5 A and 10 A cycling. The battery system, however, exceeded the cell’s upper operating limit with a 40 °C baseplate and 3.5 A charging. Despite the dense system architecture with electronics between the cells the battery system can safely deliver power in a broad temperature range. Further investigations regarding safety and failure modes are necessary, along with advancements on software and state estimation algorithms.
期刊介绍:
The CEAS Space Journal has been created by the CEAS Space Branch to provide an appropriate platform for the excellent scientific publications submitted by scientists and engineers. Under the umbrella of CEAS, the German Aerospace Center (DLR) and the European Space Agency (ESA) support the Journal. The Journal is devoted to new developments and results in all areas of space-related science and technology, including important spin-off capabilities and applications as well as ground-based support systems and manufacturing advancements. Of interest are also (invited) in-depth reviews of the status of development in specific areas of relevance to space, and descriptions of the potential way forward. Typical disciplines of interest include mission design and space systems, satellite communications, aerothermodynamics (including physical fluid dynamics), environmental control and life support systems, materials, operations, space debris, optics, optoelectronics and photonics, guidance, navigation and control, mechanisms, propulsion, power, robotics, structures, testing and thermal issues and small satellites. The Journal publishes peer-reviewed original articles, (invited) reviews and short communications.