Preparation and properties of a newly developed devulcanized and pyrolytic crumb rubber modified asphalt

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bozong Jiao, Baofeng Pan, Naisheng Guo
{"title":"Preparation and properties of a newly developed devulcanized and pyrolytic crumb rubber modified asphalt","authors":"Bozong Jiao, Baofeng Pan, Naisheng Guo","doi":"10.1108/mmms-03-2023-0078","DOIUrl":null,"url":null,"abstract":"Purpose The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the rheological and microscopic properties of DCRMA through experiments. Design/methodology/approach In this study, a new preparation process for DCRMA was developed, then the penetration, softening point and viscosity tests were employed to determine the parameters of the preparation process. The crumb rubber (CR) solubility, Fluorescence microscopy (FM), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis tests were conducted to verify the devulcanized and pyrolytic effectiveness of the preparation process. Furthermore, dynamic shear rheometer and bending beam rheometer were used to characterize the high and low-temperature rheological properties of DCRMA. Findings The results showed that the penetration balanced the CR degradation and the virgin asphalt aging well and thus could be used as a main parameters control indicator. The CR solubility, FM and FTIR tests proved that the CR has been fully devulcanized and pyrolytic via the preparation process. The DCRMA exhibited better low-temperature and fatigue performance and lower rutting performance than the conventional crumb rubber modified asphalt (CRMA) with the same CR content. Finally, the time–temperature superposition principle could be employed for all binders in this study. Originality/value A new preparation process for DCRMA was developed.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mmms-03-2023-0078","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the rheological and microscopic properties of DCRMA through experiments. Design/methodology/approach In this study, a new preparation process for DCRMA was developed, then the penetration, softening point and viscosity tests were employed to determine the parameters of the preparation process. The crumb rubber (CR) solubility, Fluorescence microscopy (FM), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis tests were conducted to verify the devulcanized and pyrolytic effectiveness of the preparation process. Furthermore, dynamic shear rheometer and bending beam rheometer were used to characterize the high and low-temperature rheological properties of DCRMA. Findings The results showed that the penetration balanced the CR degradation and the virgin asphalt aging well and thus could be used as a main parameters control indicator. The CR solubility, FM and FTIR tests proved that the CR has been fully devulcanized and pyrolytic via the preparation process. The DCRMA exhibited better low-temperature and fatigue performance and lower rutting performance than the conventional crumb rubber modified asphalt (CRMA) with the same CR content. Finally, the time–temperature superposition principle could be employed for all binders in this study. Originality/value A new preparation process for DCRMA was developed.
一种新研制的硫化热解橡胶改性沥青的制备及性能
本文的目的是确定改性橡胶粉改性沥青(DCRMA)的制备工艺参数,然后通过实验研究DCRMA的流变学和微观性能。设计/方法/方法本研究开发了一种新的DCRMA制备工艺,并通过渗透、软化点和粘度测试确定了制备工艺参数。通过对橡胶屑(CR)的溶解度、荧光显微镜(FM)、傅立叶变换红外光谱(FTIR)和热重分析等测试,验证了制备工艺的脱硫和热解效果。此外,采用动态剪切流变仪和弯曲梁流变仪对DCRMA的高低温流变特性进行了表征。结果表明,渗透能很好地平衡CR的降解和沥青的老化,可以作为主要的参数控制指标。CR的溶解度、FM和FTIR测试证明,制备过程中CR得到了充分的脱硫和热解。在相同CR含量下,DCRMA表现出较好的低温疲劳性能和较低的车辙性能。最后,时间-温度叠加原理适用于本研究的所有粘结剂。提出了一种新的DCRMA制备工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信