Caiyi Liu, Shicheng Liang, Yan Peng, Jianliang Sun, Carlo Mapelli, Silvia Barella, Andrea Gruttadauria, Marco Belfi, Ludovica Rovatti
{"title":"Dynamic Recrystallization Behavior of Q370qE Bridge Steel","authors":"Caiyi Liu, Shicheng Liang, Yan Peng, Jianliang Sun, Carlo Mapelli, Silvia Barella, Andrea Gruttadauria, Marco Belfi, Ludovica Rovatti","doi":"10.1186/s10033-023-00919-0","DOIUrl":null,"url":null,"abstract":"Abstract Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in guiding the thermomechanical processing process. In the present study, the hot deformation behavior of Q370qE bridge steel was investigated by hot compression tests conducted on a Gleeble 3800-GTC thermal-mechanical physical simulation system at temperatures ranging from 900 ℃ to 1100 ℃ and strain rates ranging from 0.01 s −1 to 10 s −1 . The obtained results were used to plot the true stress-strain and work-hardening rate curves of the experimental steel, with the latter curves used to determine the critical strains for the initiation of DRX. The Zener-Hollomon equation was subsequently applied to establish the correspondence between temperature and strain rate during the high-temperature plastic deformation of bridge steel. In terms of the DRX volume fraction solution, a new method for establishing DRX volume fraction was proposed based on two theoretical models. The good weathering and corrosion resistance of bridge steel lead to difficulties in microstructure etching. To solve this, the MTEX technology was used to further develop EBSD data to characterize the original microstructure of Q370qE bridge steel. This paper lays the theoretical foundation for studying the DRX behavior of Q370qE bridge steel.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00919-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in guiding the thermomechanical processing process. In the present study, the hot deformation behavior of Q370qE bridge steel was investigated by hot compression tests conducted on a Gleeble 3800-GTC thermal-mechanical physical simulation system at temperatures ranging from 900 ℃ to 1100 ℃ and strain rates ranging from 0.01 s −1 to 10 s −1 . The obtained results were used to plot the true stress-strain and work-hardening rate curves of the experimental steel, with the latter curves used to determine the critical strains for the initiation of DRX. The Zener-Hollomon equation was subsequently applied to establish the correspondence between temperature and strain rate during the high-temperature plastic deformation of bridge steel. In terms of the DRX volume fraction solution, a new method for establishing DRX volume fraction was proposed based on two theoretical models. The good weathering and corrosion resistance of bridge steel lead to difficulties in microstructure etching. To solve this, the MTEX technology was used to further develop EBSD data to characterize the original microstructure of Q370qE bridge steel. This paper lays the theoretical foundation for studying the DRX behavior of Q370qE bridge steel.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.