A novel method for detecting URLs phishing using hybrid machine learning algorithm

Nguyen Manh Thang, Lê Quang Anh, Hứa Song Toàn, Nguyễn Quốc Trung
{"title":"A novel method for detecting URLs phishing using hybrid machine learning algorithm","authors":"Nguyen Manh Thang, Lê Quang Anh, Hứa Song Toàn, Nguyễn Quốc Trung","doi":"10.54654/isj.v2i19.978","DOIUrl":null,"url":null,"abstract":"Abstract— The phishing attack is the type of cyberattack that targets people’s trust by masking the malicious intent of the attack as communications from reputable sources. The goal is to steal sensitive data from the victim(s) (banking information, social identification, credentials, etc.) for various purposes (selling for monetary gain, performing identity thief, using as a lever for escalation attack). In 2022, the number of reported phishing attacks will reach a whopping 255 million cases, an increment of 61% compared to 2021. Existing methods of phishing URL detection have limitations. The article proposes a method to increase the accuracy of detecting malicious URL by using machine learning methods Linear Support Vector Classification and multinomial Naive Bayes with voting mechanisms.","PeriodicalId":471638,"journal":{"name":"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nghiên cứu khoa học và công nghệ trong lĩnh vực an toàn thông tin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54654/isj.v2i19.978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract— The phishing attack is the type of cyberattack that targets people’s trust by masking the malicious intent of the attack as communications from reputable sources. The goal is to steal sensitive data from the victim(s) (banking information, social identification, credentials, etc.) for various purposes (selling for monetary gain, performing identity thief, using as a lever for escalation attack). In 2022, the number of reported phishing attacks will reach a whopping 255 million cases, an increment of 61% compared to 2021. Existing methods of phishing URL detection have limitations. The article proposes a method to increase the accuracy of detecting malicious URL by using machine learning methods Linear Support Vector Classification and multinomial Naive Bayes with voting mechanisms.
一种利用混合机器学习算法检测url网络钓鱼的新方法
摘要:网络钓鱼攻击是一种网络攻击,通过将攻击的恶意意图伪装成来自信誉良好的来源的通信来攻击人们的信任。目标是从受害者那里窃取敏感数据(银行信息、社会身份、凭证等),用于各种目的(出售以获取金钱、执行身份窃贼、用作升级攻击的杠杆)。到2022年,报告的网络钓鱼攻击数量将达到2.55亿起,与2021年相比增长61%。现有的网络钓鱼URL检测方法存在局限性。本文提出了一种利用机器学习方法线性支持向量分类和带有投票机制的多项式朴素贝叶斯来提高恶意URL检测准确率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信