{"title":"Recent progress of decacarbonyldimanganese catalysis","authors":"Tao Li, Albert S. C. Chan, Shan-Shui Meng","doi":"10.20517/cs.2023.32","DOIUrl":null,"url":null,"abstract":"Decacarbonyldimanganese (Mn2(CO)10), one of the most long-standing organometallic reagents, bears a weak Mn-Mn bond, which occurs a homo-cleavage feasibly under heating or light-irritation, delivering an active manganese-centered radical. This highly reactive metallic radical could activate the Si-H bond, C-halogen bond, N-halogen bond, S-halogen bond, and O=O bond, generating corresponding Mn species and Si, C, N, S, and O radicals. This wonderful reactivity enables an extensive utilization of this dimeric manganese in catalytic atom-transfer reactions and oxidation reactions. In this review, we offer a comprehensive review of this growing area in recent decades. Critical comparisons and mechanism analyses are provided, along with personal perspectives for future studies.","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Decacarbonyldimanganese (Mn2(CO)10), one of the most long-standing organometallic reagents, bears a weak Mn-Mn bond, which occurs a homo-cleavage feasibly under heating or light-irritation, delivering an active manganese-centered radical. This highly reactive metallic radical could activate the Si-H bond, C-halogen bond, N-halogen bond, S-halogen bond, and O=O bond, generating corresponding Mn species and Si, C, N, S, and O radicals. This wonderful reactivity enables an extensive utilization of this dimeric manganese in catalytic atom-transfer reactions and oxidation reactions. In this review, we offer a comprehensive review of this growing area in recent decades. Critical comparisons and mechanism analyses are provided, along with personal perspectives for future studies.