New approaches of (q,k)-Fibonacci–Pell sequences via linear difference equations. Applications

IF 0.4 Q4 MATHEMATICS
Irene Magalhães Craveiro, Elen Viviani Pereira Spreafico, Mustapha Rachidi
{"title":"New approaches of (q,k)-Fibonacci–Pell sequences via linear difference equations. Applications","authors":"Irene Magalhães Craveiro, Elen Viviani Pereira Spreafico, Mustapha Rachidi","doi":"10.7546/nntdm.2023.29.4.647-669","DOIUrl":null,"url":null,"abstract":"In this paper we establish some explicit formulas of (q,k)-Fibonacci–Pell sequences via linear difference equations of order 2 with variable coefficients, and explore some of their new properties. More precisely, our results are based on two approaches, namely, the determinantal and the nested sums approaches, and their closed relations. As applications, we investigate the q-analogue Cassini identities and examine a pair of Rogers–Ramanujan type identities.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"25 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.4.647-669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish some explicit formulas of (q,k)-Fibonacci–Pell sequences via linear difference equations of order 2 with variable coefficients, and explore some of their new properties. More precisely, our results are based on two approaches, namely, the determinantal and the nested sums approaches, and their closed relations. As applications, we investigate the q-analogue Cassini identities and examine a pair of Rogers–Ramanujan type identities.
线性差分方程求解(q,k) -Fibonacci-Pell序列的新方法。应用程序
本文利用变系数的2阶线性差分方程建立了(q,k) -Fibonacci-Pell序列的一些显式公式,并探讨了它们的一些新性质。更确切地说,我们的结果是基于两种方法,即行列式和嵌套式和方法,以及它们之间的密切关系。作为应用,我们研究了q-模拟卡西尼恒等式,并检验了一对Rogers-Ramanujan型恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信