A REFERENCE ARCHITECTURE OF HUMAN CYBER-PHYSICAL SYSTEMS – PART III: SEMANTIC FOUNDATIONS

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Werner Damm, Martin Fränzle, Alyssa J. Kerscher, Laine Forrest, Klaus Bengler, Bianca Biebl, Willem Hagemann, Moritz Held, David Hess, Klas Ihme, Severin Kacianka, Sebastian Lehnhoff, Andreas Luedtke, Alexander Pretschner, Astrid Rakow, Rieger Jochem, Daniel Sonntag, Jonas Sztipanovits, Maike Schwammberger, Mark Schweda, Alexander Trende, Anirudh Unni, Eric Veith
{"title":"A REFERENCE ARCHITECTURE OF HUMAN CYBER-PHYSICAL SYSTEMS – PART III: SEMANTIC FOUNDATIONS","authors":"Werner Damm, Martin Fränzle, Alyssa J. Kerscher, Laine Forrest, Klaus Bengler, Bianca Biebl, Willem Hagemann, Moritz Held, David Hess, Klas Ihme, Severin Kacianka, Sebastian Lehnhoff, Andreas Luedtke, Alexander Pretschner, Astrid Rakow, Rieger Jochem, Daniel Sonntag, Jonas Sztipanovits, Maike Schwammberger, Mark Schweda, Alexander Trende, Anirudh Unni, Eric Veith","doi":"10.1145/3622881","DOIUrl":null,"url":null,"abstract":"The design and analysis of multi-agent human cyber-physical systems in safety-critical or industry-critical domains calls for an adequate semantic foundation capable of exhaustively and rigorously describing all emergent effects in the joint dynamic behavior of the agents that are relevant to their safety and well-behavior. We present such a semantic foundation. This framework extends beyond previous approaches by extending the agent-local dynamic state beyond state components under direct control of the agent and belief about other agents (as previously suggested for understanding cooperative as well as rational behavior) to agent-local evidence and belief about the overall cooperative, competitive, or coopetitive game structure. We argue that this extension is necessary for rigorously analyzing systems of human cyber-physical systems because humans are known to employ cognitive replacement models of system dynamics that are both non-stationary and potentially incongruent. These replacement models induce visible and potentially harmful effects on their joint emergent behavior and the interaction with cyber-physical system components.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"31 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The design and analysis of multi-agent human cyber-physical systems in safety-critical or industry-critical domains calls for an adequate semantic foundation capable of exhaustively and rigorously describing all emergent effects in the joint dynamic behavior of the agents that are relevant to their safety and well-behavior. We present such a semantic foundation. This framework extends beyond previous approaches by extending the agent-local dynamic state beyond state components under direct control of the agent and belief about other agents (as previously suggested for understanding cooperative as well as rational behavior) to agent-local evidence and belief about the overall cooperative, competitive, or coopetitive game structure. We argue that this extension is necessary for rigorously analyzing systems of human cyber-physical systems because humans are known to employ cognitive replacement models of system dynamics that are both non-stationary and potentially incongruent. These replacement models induce visible and potentially harmful effects on their joint emergent behavior and the interaction with cyber-physical system components.
人类信息物理系统的参考体系结构。第3部分:语义基础
安全关键或工业关键领域的多智能体人类网络物理系统的设计和分析需要一个足够的语义基础,能够详尽和严格地描述与其安全和良好行为相关的智能体联合动态行为中的所有紧急效应。我们提出了这样一个语义基础。该框架超越了之前的方法,将代理本地动态状态扩展到代理直接控制下的状态组件和对其他代理的信念(如先前建议的理解合作和理性行为),以代理本地证据和对整体合作,竞争或合作博弈结构的信念。我们认为,这种扩展对于严格分析人类网络-物理系统系统是必要的,因为已知人类采用非平稳和潜在不一致的系统动力学的认知替代模型。这些替代模型对它们的联合涌现行为和与网络物理系统组件的相互作用产生了可见的和潜在的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.70
自引率
4.30%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信