Saturating systems and the rank-metric covering radius

IF 0.6 3区 数学 Q3 MATHEMATICS
Matteo Bonini, Martino Borello, Eimear Byrne
{"title":"Saturating systems and the rank-metric covering radius","authors":"Matteo Bonini, Martino Borello, Eimear Byrne","doi":"10.1007/s10801-023-01269-9","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is the minimum $$\\mathbb {F}_q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> -dimension of a q -system in $$\\mathbb {F}_{q^m}^k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> <mml:mi>k</mml:mi> </mml:msubsup> </mml:math> that is rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and evaluate it for certain values of k and $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> . We give constructions of rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating systems suggested from geometry.","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"10 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01269-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\rho )$$ s q m / q ( k , ρ ) , which is the minimum $$\mathbb {F}_q$$ F q -dimension of a q -system in $$\mathbb {F}_{q^m}^k$$ F q m k that is rank- $$\rho $$ ρ -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\rho )$$ s q m / q ( k , ρ ) and evaluate it for certain values of k and $$\rho $$ ρ . We give constructions of rank- $$\rho $$ ρ -saturating systems suggested from geometry.
饱和系统和等级-度量覆盖半径
摘要引入了秩饱和系统的概念,并概述了它与给定覆盖半径的秩度量码的对应关系。我们考虑寻找$$s_{q^m/q}(k,\rho )$$ s q m / q (k, ρ)的值的问题,它是$$\mathbb {F}_{q^m}^k$$ F q m k中秩- $$\rho $$ ρ -饱和的q -系统的最小$$\mathbb {F}_q$$ F q -维。这相当于秩度量中的覆盖问题。我们得到了$$s_{q^m/q}(k,\rho )$$ s q m / q (k, ρ)的上界和下界,并对k和$$\rho $$ ρ的某些值进行了计算。我们给出了秩- $$\rho $$ ρ -饱和系统的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics. The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信