{"title":"Saturating systems and the rank-metric covering radius","authors":"Matteo Bonini, Martino Borello, Eimear Byrne","doi":"10.1007/s10801-023-01269-9","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is the minimum $$\\mathbb {F}_q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> -dimension of a q -system in $$\\mathbb {F}_{q^m}^k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> <mml:mi>k</mml:mi> </mml:msubsup> </mml:math> that is rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and evaluate it for certain values of k and $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> . We give constructions of rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating systems suggested from geometry.","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"10 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01269-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\rho )$$ sqm/q(k,ρ) , which is the minimum $$\mathbb {F}_q$$ Fq -dimension of a q -system in $$\mathbb {F}_{q^m}^k$$ Fqmk that is rank- $$\rho $$ ρ -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\rho )$$ sqm/q(k,ρ) and evaluate it for certain values of k and $$\rho $$ ρ . We give constructions of rank- $$\rho $$ ρ -saturating systems suggested from geometry.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.