Thermally stratified Cu–Al2O3/water hybrid nanofluid flow with the impact of an inclined magnetic field, viscous dissipation and heat source/sink across a vertically stretching cylinder
{"title":"Thermally stratified Cu–Al<sub>2</sub>O<sub>3</sub>/water hybrid nanofluid flow with the impact of an inclined magnetic field, viscous dissipation and heat source/sink across a vertically stretching cylinder","authors":"Ashish Paul, Jintu Mani Nath, Tusar Kanti Das","doi":"10.1002/zamm.202300084","DOIUrl":null,"url":null,"abstract":"Abstract A numerical study of the thermally stratified flow of H 2 O based Cu − Al 2 O 3 hybrid nanofluid over a linearly stretching cylinder placed vertically in a porous media has been performed. The influences of viscous dissipation, thermal source/sink, and an inclined magnetic field were also considered. Using appropriate similarity transformations, the non‐linear mathematical equations of the flow model are translated into a dimensionless form. The in‐build finite difference Matlab code Bvp4c is used to attain the numerical solution of the transformed non‐linear ordinary differential equations (ODEs). Influences of nanoparticles when added to the water and also the flow parameters’ impacts on the flow rate and thermal transport rate are shown in graphs and tables. The results showed that the absolute value of the shear stress of the hybrid nanofluids was enhanced by up to 33% compared to the considered nanofluid. The study also revealed that the heat transport rate in the convective flow region was much higher in hybrid nanofluid as compared to nanofluid. For Cu − Al 2 O 3 /water hybrid nanofluid, the temperature went negative for high thermal stratification. The present study has important implications for the design and optimization of heat transfer devices that use thermally stratified hybrid nanofluids. The results also provide novel insights into the flow behavior of these fluids, that can be used to improve our understanding of their physical properties.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A numerical study of the thermally stratified flow of H 2 O based Cu − Al 2 O 3 hybrid nanofluid over a linearly stretching cylinder placed vertically in a porous media has been performed. The influences of viscous dissipation, thermal source/sink, and an inclined magnetic field were also considered. Using appropriate similarity transformations, the non‐linear mathematical equations of the flow model are translated into a dimensionless form. The in‐build finite difference Matlab code Bvp4c is used to attain the numerical solution of the transformed non‐linear ordinary differential equations (ODEs). Influences of nanoparticles when added to the water and also the flow parameters’ impacts on the flow rate and thermal transport rate are shown in graphs and tables. The results showed that the absolute value of the shear stress of the hybrid nanofluids was enhanced by up to 33% compared to the considered nanofluid. The study also revealed that the heat transport rate in the convective flow region was much higher in hybrid nanofluid as compared to nanofluid. For Cu − Al 2 O 3 /water hybrid nanofluid, the temperature went negative for high thermal stratification. The present study has important implications for the design and optimization of heat transfer devices that use thermally stratified hybrid nanofluids. The results also provide novel insights into the flow behavior of these fluids, that can be used to improve our understanding of their physical properties.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.