Walter De Simone, Mattia Iannella, Paola D’Alessandro, Maurizio Biondi
{"title":"Applying geostatistical hotspot analyses to a ‘double-invaded’ plant–pest co-occurrence scenario","authors":"Walter De Simone, Mattia Iannella, Paola D’Alessandro, Maurizio Biondi","doi":"10.1017/s037689292300022x","DOIUrl":null,"url":null,"abstract":"Summary Invasive alien species represent a multifaceted management problem in terms of threats to biodiversity and ecosystems and their impacts on agriculture and human well-being. Ambrosia artemisiifolia is an invasive alien plant in Europe that affects the human population as its already highly allergenic pollen can interact with air pollutants, resulting in detrimental effects on health. In this context, the invasive beetle Ophraella communa was proposed as a biocontrol agent of A. artemisiifolia , as it feeds on its leaves, leading to a decrease in pollen production. This paper takes advantage of the different co-occurrence classes obtained by the ecological niche models inferred for both of these species based on current and future climatic conditions. We integrate them with spatial data regarding major air pollutants (nitrogen dioxide and fine particulate matter). We couple this information with European human population density data at a narrow territorial scale to infer current and future statistically significant hotspots of health risk. The Netherlands and the UK host the widest hotspots within their national territory for both current (7.09% and 3.54%, respectively) and future (15.04% and 6.70%, respectively) scenarios. Considering the alarming results obtained for some areas, the monitoring and biocontrol of A. artemisiifolia should be applied as a European strategy.","PeriodicalId":50517,"journal":{"name":"Environmental Conservation","volume":"27 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Conservation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s037689292300022x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Invasive alien species represent a multifaceted management problem in terms of threats to biodiversity and ecosystems and their impacts on agriculture and human well-being. Ambrosia artemisiifolia is an invasive alien plant in Europe that affects the human population as its already highly allergenic pollen can interact with air pollutants, resulting in detrimental effects on health. In this context, the invasive beetle Ophraella communa was proposed as a biocontrol agent of A. artemisiifolia , as it feeds on its leaves, leading to a decrease in pollen production. This paper takes advantage of the different co-occurrence classes obtained by the ecological niche models inferred for both of these species based on current and future climatic conditions. We integrate them with spatial data regarding major air pollutants (nitrogen dioxide and fine particulate matter). We couple this information with European human population density data at a narrow territorial scale to infer current and future statistically significant hotspots of health risk. The Netherlands and the UK host the widest hotspots within their national territory for both current (7.09% and 3.54%, respectively) and future (15.04% and 6.70%, respectively) scenarios. Considering the alarming results obtained for some areas, the monitoring and biocontrol of A. artemisiifolia should be applied as a European strategy.
期刊介绍:
Environmental Conservation is one of the longest-standing, most highly-cited of the interdisciplinary environmental science journals. It includes research papers, reports, comments, subject reviews, and book reviews addressing environmental policy, practice, and natural and social science of environmental concern at the global level, informed by rigorous local level case studies. The journal"s scope is very broad, including issues in human institutions, ecosystem change, resource utilisation, terrestrial biomes, aquatic systems, and coastal and land use management. Environmental Conservation is essential reading for all environmentalists, managers, consultants, agency workers and scientists wishing to keep abreast of current developments in environmental science.