{"title":"High-order optical Hall effect at the tight focus of laser radiation","authors":"V.V. Kotlyar, S.S. Stafeev, E.S. Kozlova","doi":"10.18287/2412-6179-co-1310","DOIUrl":null,"url":null,"abstract":"In this work, by the Richards-Wolf method, which describes the behavior of electromagnetic radiation at the tight focus, it is shown that high-order spin and orbital Hall effects take place in the focal plane. It is shown that when focusing a linearly polarized optical vortex with unit topological charge, four local subwavelength regions are formed in the focal plane, in which directions of the longitudinal projection of the spin angular momentum are opposite in the neighboring regions. That is, photons falling into neighboring regions in the focus have the opposite spin. This is the spin Hall effect of the 2nd order. It is also shown that when tightly focusing of superposition of cylindrical vector beams of the m-th order and zero order, 2m subwavelength regions are formed in the plane of tight focus, in which directions of the longitudinal projection of the orbital angular momentum are opposite in the neighboring regions. That is, photons falling into the neighboring regions at the focus have the opposite-sign on-axis projections of the orbital angular momentum. This is the orbital Hall effect of the m-th order.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, by the Richards-Wolf method, which describes the behavior of electromagnetic radiation at the tight focus, it is shown that high-order spin and orbital Hall effects take place in the focal plane. It is shown that when focusing a linearly polarized optical vortex with unit topological charge, four local subwavelength regions are formed in the focal plane, in which directions of the longitudinal projection of the spin angular momentum are opposite in the neighboring regions. That is, photons falling into neighboring regions in the focus have the opposite spin. This is the spin Hall effect of the 2nd order. It is also shown that when tightly focusing of superposition of cylindrical vector beams of the m-th order and zero order, 2m subwavelength regions are formed in the plane of tight focus, in which directions of the longitudinal projection of the orbital angular momentum are opposite in the neighboring regions. That is, photons falling into the neighboring regions at the focus have the opposite-sign on-axis projections of the orbital angular momentum. This is the orbital Hall effect of the m-th order.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.