Nonparametric estimation of the number of classes with different average brightness in thermal images

IF 1.1 Q4 OPTICS
A.N. Galyntich, M.A. Raifeld
{"title":"Nonparametric estimation of the number of classes with different average brightness in thermal images","authors":"A.N. Galyntich, M.A. Raifeld","doi":"10.18287/2412-6179-co-1284","DOIUrl":null,"url":null,"abstract":"When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"42 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image.
热图像中不同平均亮度类数的非参数估计
在没有亮度分类数目信息的情况下,自动图像阈值分割的综合算法涉及到阈值数目的确定问题。估计图像中类别数量问题的解决方案可以基于先验概率未知时将其分布表示为亮度类别分布的混合分布,或者估计直方图模式的数量。同时,已知混合分裂问题仅对某些类型的分布有解,直方图模式并不总是可区分的。在一般情况下,当亮度分类的分布未知时,这些方法的应用存在困难。本文提出了一种基于秩直方图的非参数方法,利用图像中每个亮度类元素的局部空间分组特性来确定平均亮度不同的类别数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信