Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning

Ratna Andini Husen, Rizki Astuti, Lili Marlia, Rahmaddeni Rahmaddeni, Lusiana Efrizoni
{"title":"Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning","authors":"Ratna Andini Husen, Rizki Astuti, Lili Marlia, Rahmaddeni Rahmaddeni, Lusiana Efrizoni","doi":"10.57152/malcom.v3i2.901","DOIUrl":null,"url":null,"abstract":"Opini publik yang terekspresikan melalui media sosial, khususnya Twitter, telah menjadi sumber informasi yang penting bagi perusahaan dan lembaga keuangan, termasuk Bank BSI. Analisis sentimen opini publik dapat membantu Bank BSI dalam memahami pandangan dan persepsi masyarakat terhadap layanan mereka. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan algoritma machine learning yaitu algoritma SVM, naïve bayes dan logistic regression untuk menganalisis sentimen opini publik terhadap Bank BSI yang terdapat dalam tweet di Twitter. Data tweet yang digunakan dalam penelitian ini diambil situs dari kaggle dengan jumlah data 24.401, berisi tentang ulasan komentar pengguna terkait ransomware pada Bank BSI. Hasil dari percobaan yang telah dilakukan diperoleh bahwa SVM menghasilkan akurasi 0,88%, naive bayes menghasilkan akurasi 0,76%, dan logistic regression menghasilkan akurasi 0,86%. Berdasarkan dari hasil percobaan bahwa SVM mendapatkan performa kinerja yang lebih unggul dari pada algoritma naive bayes dan logistic regression . Dalam konteks ini, SVM dapat menjadi pilihan yang baik untuk analisis sentimen secara umum. Penelitian ini mengungkapkan bahwa persentase sentimen negatif terhadap Bank BSI lebih tinggi daripada sentimen positif. Temuan ini menunjukkan adanya keprihatinan dan ketidakpuasan yang signifikan di antara masyarakat terhadap layanan perusahaan. Meskipun ada beberapa sentimen positif yang teridentifikasi.","PeriodicalId":499353,"journal":{"name":"MALCOM Indonesian Journal of Machine Learning and Computer Science","volume":"11 suppl_1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v3i2.901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Opini publik yang terekspresikan melalui media sosial, khususnya Twitter, telah menjadi sumber informasi yang penting bagi perusahaan dan lembaga keuangan, termasuk Bank BSI. Analisis sentimen opini publik dapat membantu Bank BSI dalam memahami pandangan dan persepsi masyarakat terhadap layanan mereka. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan algoritma machine learning yaitu algoritma SVM, naïve bayes dan logistic regression untuk menganalisis sentimen opini publik terhadap Bank BSI yang terdapat dalam tweet di Twitter. Data tweet yang digunakan dalam penelitian ini diambil situs dari kaggle dengan jumlah data 24.401, berisi tentang ulasan komentar pengguna terkait ransomware pada Bank BSI. Hasil dari percobaan yang telah dilakukan diperoleh bahwa SVM menghasilkan akurasi 0,88%, naive bayes menghasilkan akurasi 0,76%, dan logistic regression menghasilkan akurasi 0,86%. Berdasarkan dari hasil percobaan bahwa SVM mendapatkan performa kinerja yang lebih unggul dari pada algoritma naive bayes dan logistic regression . Dalam konteks ini, SVM dapat menjadi pilihan yang baik untuk analisis sentimen secara umum. Penelitian ini mengungkapkan bahwa persentase sentimen negatif terhadap Bank BSI lebih tinggi daripada sentimen positif. Temuan ini menunjukkan adanya keprihatinan dan ketidakpuasan yang signifikan di antara masyarakat terhadap layanan perusahaan. Meskipun ada beberapa sentimen positif yang teridentifikasi.
利用机器学习算法分析 Twitter 上公众对 BSI 银行的看法
通过社交媒体,特别是Twitter,表达的公众舆论已经成为包括BSI银行在内的企业和金融机构的重要信息来源。民意分析可以帮助BSI银行了解人们对其服务的看法和看法。本研究旨在开发和执行SVM算法、naive bayes算法和分析公众对BSI银行的看法的分析。本研究使用的推文数据来自kaggle和24401的数据,其中包含BSI银行关于ransomware的用户评论。实验的结果是,SVM产生了0.88%的准确率,naive bayes产生了0.76%的准确率,而逻辑回归产生了0.86%的准确率。基于SVM的实验结果,SVM比naive bayes算法和逻辑回归算法获得了更好的表现。在这种背景下,SVM可以作为一般情绪分析的好选择。这项研究表明,BSI银行的负面情绪高于积极情绪。这一发现表明,公众对企业服务有着强烈的担忧和不满。虽然已经确定了一些积极的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信