Statistical determinism in non-Lipschitz dynamical systems

Pub Date : 2023-10-11 DOI:10.1017/etds.2023.74
Theodore D. Drivas, Alexei A. Mailybaev, Artem Raibekas
{"title":"Statistical determinism in non-Lipschitz dynamical systems","authors":"Theodore D. Drivas, Alexei A. Mailybaev, Artem Raibekas","doi":"10.1017/etds.2023.74","DOIUrl":null,"url":null,"abstract":"Abstract We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter $\\nu $ : the regularized dynamics is globally defined for each $\\nu> 0$ , and the original singular system is recovered in the limit of vanishing $\\nu $ . We prove that this limit yields a unique statistical solution independent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter $\nu $ : the regularized dynamics is globally defined for each $\nu> 0$ , and the original singular system is recovered in the limit of vanishing $\nu $ . We prove that this limit yields a unique statistical solution independent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution.
分享
查看原文
非lipschitz动力系统中的统计决定论
研究了一类具有非lipschitz点奇点的常微分方程,该奇异点允许通过该点的非唯一解。作为选择标准,我们引入了依赖于参数$\nu $的随机正则化:正则化动力学是为每个$\nu>全局定义的;0$,在$\nu $消失的极限内恢复原来的奇异系统。证明了当确定性系统具有具有收敛于平衡性质的物理测度的混沌吸引子时,该极限产生一个独立于正则化的唯一统计解。在这种情况下,解在通过奇点后自发地成为随机的:它们被随机选择,具有内在的概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信