Numerical Simulation Of Two-Dimensional Giesekus Flow Past A Rotating Cylinder

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
XiaoYu Wen, Jing Zhu, Botong Li, Limei Cao, Xinhui Si
{"title":"Numerical Simulation Of Two-Dimensional Giesekus Flow Past A Rotating Cylinder","authors":"XiaoYu Wen, Jing Zhu, Botong Li, Limei Cao, Xinhui Si","doi":"10.1115/1.4063177","DOIUrl":null,"url":null,"abstract":"Abstract The two-dimensional viscoelastic Giesekus flow past a circular cylinder is investigated by the openfoam platform based on the finite volume method. The physical parameters, including Weissenberg number (0.1≤Wi≤10), dimensionless rotation rate (0≤Ro≤2), and mobility factor (0≤α≤0.5), are investigated when Reynolds number is defined as 100. Two cases, i.e., β=0.1 and β=0.9, are considered. The combination effects are discussed using lift coefficients, instantaneous vorticity, time-averaged streamlines, and pressure distribution along the cylinder wall. The results are compared with other numerical computations. Dimensionless rotation rate destroys the symmetry of vertex shedding and suppresses the instability of the viscoelastic fluids. Elastic property facilitates the formation of the closed streamlins around the cylinder surface. These effects are amplified by the introduction of dimensionless rotation rate. However, shear-shinning property has opposite effects on this region. The distribution of polymer stress τxxp and τyyp are given to analyze the effects of viscoelasticity. As the fluids flow presents the shear-shinning property, the values of polymer stresses have an obvious decrease.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"28 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The two-dimensional viscoelastic Giesekus flow past a circular cylinder is investigated by the openfoam platform based on the finite volume method. The physical parameters, including Weissenberg number (0.1≤Wi≤10), dimensionless rotation rate (0≤Ro≤2), and mobility factor (0≤α≤0.5), are investigated when Reynolds number is defined as 100. Two cases, i.e., β=0.1 and β=0.9, are considered. The combination effects are discussed using lift coefficients, instantaneous vorticity, time-averaged streamlines, and pressure distribution along the cylinder wall. The results are compared with other numerical computations. Dimensionless rotation rate destroys the symmetry of vertex shedding and suppresses the instability of the viscoelastic fluids. Elastic property facilitates the formation of the closed streamlins around the cylinder surface. These effects are amplified by the introduction of dimensionless rotation rate. However, shear-shinning property has opposite effects on this region. The distribution of polymer stress τxxp and τyyp are given to analyze the effects of viscoelasticity. As the fluids flow presents the shear-shinning property, the values of polymer stresses have an obvious decrease.
旋转圆柱体二维Giesekus流的数值模拟
摘要采用基于有限体积法的开放式泡沫平台,研究了二维粘弹性Giesekus流在圆柱上的流动。当雷诺数定义为100时,研究了Weissenberg数(0.1≤Wi≤10)、无量纲旋转速率(0≤Ro≤2)和迁移系数(0≤α≤0.5)等物理参数。考虑两种情况,即β=0.1和β=0.9。利用升力系数、瞬时涡量、时间平均流线和沿气缸壁的压力分布来讨论这些组合效应。结果与其他数值计算结果进行了比较。无因次旋转速率破坏了顶点脱落的对称性,抑制了粘弹性流体的不稳定性。弹性特性有利于圆柱表面形成封闭流线。由于引入无因次旋转速率,这些效应被放大了。然而,剪切发光特性对该区域有相反的影响。给出了聚合物应力τxxp和τyyp的分布,以分析粘弹性的影响。由于流体流动表现出剪切发光的特性,聚合物的应力值有明显的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信