A “magic” approach to octonionic Rosenfeld spaces

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Alessio Marrani, Daniele Corradetti, David Chester, Raymond Aschheim, Klee Irwin
{"title":"A “magic” approach to octonionic Rosenfeld spaces","authors":"Alessio Marrani, Daniele Corradetti, David Chester, Raymond Aschheim, Klee Irwin","doi":"10.1142/s0129055x23500320","DOIUrl":null,"url":null,"abstract":"In his study on the geometry of Lie groups, Rosenfeld postulated a strict relation between all real forms of exceptional Lie groups and the isometries of projective and hyperbolic spaces over the (rank-2) tensor product of Hurwitz algebras taken with appropriate conjugations. Unfortunately, the procedure carried out by Rosenfeld was not rigorous, since many of the theorems he had been using do not actually hold true in the case of algebras that are not alternative nor power-associative. A more rigorous approach to the definition of all the planes presented more than thirty years ago by Rosenfeld in terms of their isometry group, can be considered within the theory of coset manifolds, which we exploit in this work, by making use of all real forms of Magic Squares of order three and two over Hurwitz normed division algebras and their split versions. Within our analysis, we find seven pseudo-Riemannian symmetric coset manifolds which seemingly cannot have any interpretation within Rosenfeld’s framework. We carry out a similar analysis for Rosenfeld lines, obtaining that there are a number of pseudo-Riemannian symmetric cosets which do not have any interpretation á la Rosenfeld.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"30 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129055x23500320","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In his study on the geometry of Lie groups, Rosenfeld postulated a strict relation between all real forms of exceptional Lie groups and the isometries of projective and hyperbolic spaces over the (rank-2) tensor product of Hurwitz algebras taken with appropriate conjugations. Unfortunately, the procedure carried out by Rosenfeld was not rigorous, since many of the theorems he had been using do not actually hold true in the case of algebras that are not alternative nor power-associative. A more rigorous approach to the definition of all the planes presented more than thirty years ago by Rosenfeld in terms of their isometry group, can be considered within the theory of coset manifolds, which we exploit in this work, by making use of all real forms of Magic Squares of order three and two over Hurwitz normed division algebras and their split versions. Within our analysis, we find seven pseudo-Riemannian symmetric coset manifolds which seemingly cannot have any interpretation within Rosenfeld’s framework. We carry out a similar analysis for Rosenfeld lines, obtaining that there are a number of pseudo-Riemannian symmetric cosets which do not have any interpretation á la Rosenfeld.
八元离子罗森菲尔德空间的“神奇”方法
在他对李群几何的研究中,Rosenfeld假设了在(秩-2)Hurwitz代数张量积上的投影和双曲空间等距之间的严格关系。不幸的是,Rosenfeld执行的程序并不严格,因为他使用的许多定理实际上在非可选代数和幂结合代数的情况下并不成立。三十多年前Rosenfeld根据等距群给出的所有平面的定义的一个更严格的方法,可以在协集流形理论中考虑,我们在这项工作中利用了Hurwitz赋范除法代数上3阶和2阶幻方的所有实形式及其分裂版本。在我们的分析中,我们发现了七个伪黎曼对称的协集流形,它们在罗森菲尔德的框架内似乎不能有任何解释。我们对罗森菲尔德线进行了类似的分析,得到了许多不具有任何解释的伪黎曼对称集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信