Simone Servadio, Nihal Simha, Davide Gusmini, Daniel Jang, Theodore St. Francis, Andrea D’Ambrosio, Giovanni Lavezzi, Richard Linares
{"title":"Risk Index for the Optimal Ranking of Active Debris Removal Targets","authors":"Simone Servadio, Nihal Simha, Davide Gusmini, Daniel Jang, Theodore St. Francis, Andrea D’Ambrosio, Giovanni Lavezzi, Richard Linares","doi":"10.2514/1.a35752","DOIUrl":null,"url":null,"abstract":"The first step of any active debris removal (ADR) mission is the selection of the target. The optimal choice is to find the most dangerous debris that can be removed considering the chaser spacecraft requirements and mission constraints. After creating a catalog of the current space population in low Earth orbit (LEO), the MIT Monte Carlo Orbital Capacity Assessment Tool (MOCAT-MC) is used to simulate and predict the future space environment and the interaction among the space population. A novel performance index to quantify the criticality of each debris and the risk that it presents to the space environment is proposed. The new risk index considers the proximity of the debris to highly populated regions, its persistence in orbit, its likelihood to collide, and the estimated number and mass of debris that it can generate. The risk index is then optimized to work either with the full space population or a subset of it, where the ranking of risk among debris is highlighted. Multiple risk analyses are proposed in the test cases, where the ranked list of optimal targets is provided.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"54 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
The first step of any active debris removal (ADR) mission is the selection of the target. The optimal choice is to find the most dangerous debris that can be removed considering the chaser spacecraft requirements and mission constraints. After creating a catalog of the current space population in low Earth orbit (LEO), the MIT Monte Carlo Orbital Capacity Assessment Tool (MOCAT-MC) is used to simulate and predict the future space environment and the interaction among the space population. A novel performance index to quantify the criticality of each debris and the risk that it presents to the space environment is proposed. The new risk index considers the proximity of the debris to highly populated regions, its persistence in orbit, its likelihood to collide, and the estimated number and mass of debris that it can generate. The risk index is then optimized to work either with the full space population or a subset of it, where the ranking of risk among debris is highlighted. Multiple risk analyses are proposed in the test cases, where the ranked list of optimal targets is provided.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.